

BIOPHYSICALLY SPECIAL, UNIQUE MARINE AREAS OF TONGA

Marine and Coastal Biodiversity Management in Pacific Island Countries

EFFECTIVE MANAGEMENT

Marine and coastal ecosystems of the Pacific Ocean provide benefits for all people in and beyond the region. To better understand and improve the effective management of these values on the ground, Pacific Island Countries are increasingly building institutional and personal capacities for Blue Planning.

But there is no need to reinvent the wheel, when learning from experiences of centuries of traditional management in Pacific Island Countries. Coupled with scientific approaches these experiences can strengthen effective management of the region's rich natural capital, if lessons learnt are shared.

The MACBIO project collaborates with national and regional stakeholders towards documenting effective approaches to sustainable marine resource management and conservation. The project encourages and supports stakeholders to share tried and tested concepts and instruments more widely throughout partner countries and the Oceania region.

This report outlines the process undertaken to define and describe the special, unique marine areas of Tonga. These special, unique marine areas provide an important input to decisions about, for example, permits, licences, EIAs and where to place different types of marine protected areas, locally managed marine areas and Community Conservation Areas in Tonga.

For a copy of all reports and communication material please visit www.macbio-pacific.info.

BIOPHYSICALLY SPECIAL, UNIQUE MARINE AREAS OF TONGA

AUTHORS:

Ceccarelli DM¹, Wendt H², Matoto AL³, Fonua E³, Fernandes L²

SUGGESTED CITATION

Ceccarelli DM, Wendt H, Matoto AL, Fonua E and Fernandes L (2017) Biophysically special, unique marine areas of Tonga. MACBIO (GIZ, IUCN, SPREP), Suva.

2017

AUTHOR AFFILIATIONS

- 1 ARC Centre of Excellence for Coral Reef Studies, James Cook University and Marine Ecology Consultant
- 2 International Union for the Conservation of Nature Oceania Regional Office (IUCN-ORO)
- 3 Department of Environment, Tonga

ACKNOWLEDGEMENTS

This work was made possible through the work of the Ocean 7, and all workshop participants : Tukua Tonga, Maka Matekitonga, Peti Veikoso, Tevita L. Fotu, Teisa Fifita, Simata-ela'a V. Palu, 'Atunaisa Fetokai, Rosamond Bing, Taaniela Kula, Lopeti Tufui, Cadinia Funganitao, 'Aispeli Palaki, Samuela Tatafu, Teisa Fifita, Teisina Fuko, Dr. Vailala Matoto, Dr. Tu'ikolongahau Halafihi, Sosefina Vili, Mafile'o Masi, Kosilio Faka'osi, Dorothy Foliaki, Karen Stone, Hakaumotu Fakapelea and Jonah Sullivan. We acknowledge following sources of data: Birdlife International, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Convention on Biological Diversity (CBD), Flanders Marine Institute (VLIZ), General Bathymetric Chart of the Oceans (GEBCO), Government of the Kingdom of Tonga, GRID-Arendal, Institute for Marine Remote Sensing-University of South Florida (IMaRS-USF), InterRidge Vents Database, The Khaled Bin Sultan Living Ocean Foundation, National Oceanic and Atmospheric Administration (NOAA), Oregon State University, Pacific Community (SPC), the National Aeronautics and Space Administration (NASA), United Nations Environment World Conservation Monitoring Centre (UNEP-WCMC) and the United States Geological Survey (USGS). The MACBIO project is funded by the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB). It is being implemented by the German Agency for International Cooperation (GIZ) and the Government of Tonga in close collaboration with the Secretariat of the Pacific Regional Environment Programme (SPREP) and with technical support from the International Union for Conservation of Nature (IUCN).

© MACBIO 2017

All MACBIO Project partners including the Secretariat of the Pacific Regional Environment Programme (SPREP), the International Union for Conservation of Nature (IUCN) and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) are the inherent copyright owners of this publication. Reproduction of this publication for educational or other non-commercial uses is authorized without prior written permission from the copyright holder(s) provided the source is fully acknowledged. Reproduction of the copyright holder(s). The designation of geographical entities in this publication, and the presentation of the material do not imply the expression of any opinion whatsoever on the part of SPREP, IUCN, GIZ or the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. This document has been produced with funds provided by the International Climate Initiative (IKI). BMUB supports this initiative on the basis of a decision adopted by the German Bundestag. The views expressed herein should not be taken, in any way, to reflect the official opinion of the Federal Government of Germany. The views expressed in this publication do not necessarily reflect those of SPREP/IUCN/GIZ/BMUB.

CONTENTS

	knowledgements	iv
Acr	ronynms	vi
Exe	ecutive Summary	1
1.	Introduction	3
2.	Methods	5
2.1	Data gathering	5
2.2	Workshop and additional consultations	5
2.3	Rating of Tonga's special, unique marine sites	6
2.4	Overall prioritisation	7
2.5	Layout of site information in report	7
3.	Results	9
3.1	Large-scale biophysically special, unique marine sites	9
	3.1.1 Site L 1: Seamounts and ridges around 'Ata Island	9
	3.1.2 Site L 2: Tonga Trench and Tonga Ridge	12
	3.1.3 Site L 3: Inshore marine areas	14
	3.1.4 Site L 4: Hydrothermal vents	17
	3.1.5 Site L 5: Offshore west of Tongan islands	19
	3.1.6 Site L 6: Ha'apai High Productivity Zone	21
	3.1.7 Site L 7: Vava'u waters	24
	3.1.8 Site L 8: Tongatapu and 'Eua whale areas	27
	3.1.9 Site L 9: Canyons	29
3.2	Finer scale biophysically special, unique marine sites	31
	3.2.1 Niuatoputapu Island Group	31
	3.2.2 Vava'u Island Group	38
	3.2.3 Ha'apai Island Group	49
	3.2.4 Tongatapu Island Group	61
4.	Discussion	77
5.	References	79
6.	Appendices	87

ACRONYNMS

CBD	Convention on Biological Diversity
CITES	Convention on International Trade in Endangered Species
CMS	Convention on Migratory Species
EBSA	Ecologically or Biologically Significant Marine Areas
EPS	Endangered and Protected Species
FFA	Fisheries Forum Agency
FIME	Fiji Islands Marine Ecoregion
IBA	Important Bird Areas
ICM	Integrated Coastal Zone Management
IUCN	International Union for the Conservation of Nature
КВА	Key Biodiversity Area
MACBIO	Marine and Coastal Biodiversity Management in Pacific Island countries project
OFD	Offshore Fisheries Management Decree
SMA	Special Management Area

WCPFC Western and Central Pacific Fisheries Commission

EXECUTIVE SUMMARY

In 2015, the Tongan Cabinet embarked upon a National Marine Spatial Planning process, establishing a marine spatial planning technical working group comprising seven Ministries (the "Ocean 7"). One of their tasks was to identify Tonga's special, unique marine areas. This report brings together data, literature and the outputs of a special workshop synthesising information about the areas identified. Data collected informed a scoring system by which the areas could be rated. The areas were described, justified and scored according to four criteria: geographic explicitness, justification, information sources and legal obligations associated with each site. Each site was described in as much detail as the available information sources allowed, and given a score out of 12. Sites were divided into large-scale sites and finer-scale sites, and the latter were divided into island groups.

None of the large-scale sites was given the maximum score of 12. Because of their large-scale and often offshore nature, the geographic boundaries of these sites were not exactly defined. A clear site boundary is important for spatial planning, especially in the case of marine areas where the features to be protected are usually under the surface or determined by the movements of animals, and therefore not readily visible. However, also because of their broad-scale nature, many of the large-scale sites received high scores, because their geographic span guarantees the inclusion of some important attributes, and had some directly relevant sources.

Among the finer-scale sites, the two highest-scoring sites (12) were Fonualei and Toku Islands and Tongatapu coral reefs. Many of the sites were given a special, unique status because their remoteness had left their ecosystems relatively intact. For instance, it is the coral reefs further offshore that are considered more special and unique because the lack of exploitation and pollution makes them more diverse and resilient, with more abundant flora and fauna and intact food webs. Spatial planning can also take this into account in the context of connectivity, where intact coral reefs could act as sources of larvae to replenish degraded reefs. Geographic isolation also often leads to unique assemblages, genetic distinctness and the presence of endemics. Similarly, when a site was considered special and unique because of the presence or high density of a certain species (e.g. octopus), it was usually due to the disappearance of this species in many other areas throughout Tonga.

Both high and low scores are useful for management; high-scoring sites can be prioritised with confidence, while lower-scoring sites can be highlighted for needing more research or requiring protection for the purposes of ecosystem recovery, or even restoration efforts. Future scoring systems may take into account levels of human use or impact, as this affects the intrinsic ecological value of a habitat, assemblage, population or ecosystem. The identification and scoring of special, unique marine areas can guide the next steps in marine spatial planning, but also inform other management measures (e.g. permit or licencing decisions) or environmental impact assessments (EIAs) that may be relevant to these locations.

1. INTRODUCTION

On 22 July 2015, the Tongan Cabinet decided to embark upon a National Marine Spatial Planning process (Cabinet Decision 716). They consequently established a marine spatial planning technical working group (the "Ocean 7"), comprised of the seven key Ministries with responsibilities regarding use, development and management of Tonga's ocean. The Ocean 7 is a working group of the National Environmental Coordinating Committee – a national committee comprised of CEOs from Ministries with responsibilities for, or interests in, Tonga's environment.

The Ocean 7 recommended the following marine spatial planning process for Tonga. The outcomes of the *italicised* part of task No. 5 (below) are described in this report.

- 1. Define ocean planning objectives/goals
- 2. Determine consultation process
- 3. Finalise Management Area typology including objectives and activity matrix
- 4. Legal Review completed
- 5. Definition of biophysically special, unique marine places and use mapping workshop
- 6. Bioregionalisation workshop
- Draft biophysical and socio-economic, cultural and management feasibility principles to guide Management Area placement
- 8. Preparation for first national consultations and awareness materials
- 9. Consultations on bioregion/principles and get input on what kind of management communities want
- 10. Revisions of bioregion/principles/priority areas based upon consultations
- 11. Government agreement bioregions/principles/priorities
- 12. Prepare draft map of candidate Management Areas & prepare for consultations on same
- 13. Consultations on draft map
- 14. Analysis of input from consultations is used to revise draft map
- 15. Final (mini) round consultations on "final" map of systems of Management Areas
- 16. Final adjustments map
- 17. Final system Management Areas agreed (informally) by government
- 18. Internal Government approval processes
- 19. Gazettal of spatial Ocean Plan = system of marine Management Areas across Tonga
- 20. Final consultations on final Ocean Plan once implemented

The Cabinet paper endorsed this process and the support of the Marine and Coastal Biodiversity Management in Pacific Island Countries (MACBIO) project. The MACBIO project aims to strengthen marine and coastal biodiversity management in Pacific Island countries such as Tonga. In particular, it can support ocean-wide marine spatial planning. MACBIO is funded by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB). It is being implemented by the German Agency for International Development (GIZ) with the countries of Fiji, Kiribati, Solomon Islands, Tonga and Vanuatu. It has technical support from the Oceania Office of the International Union for the Conservation of Nature (IUCN) and is working in close collaboration with the Pacific Regional Environment Program (SPREP).

On 18 May 2016, the Ocean 7, supported by MACBIO, co-hosted a technical workshop to define Biophysically Special, Unique Marine Areas (SUMA) of Tonga. This report describes the preparations that preceded the workshop, the outcomes of that workshop, and follow-up research recommended during the workshop and by the Ocean 7.

The report also outlines the methods used to identify and describe the sites and the resulting list of biophysically special, unique marine areas of Tonga. The sites are categorized as either being "large scale" or associated with an island group ("fine scale").

2. METHODS

The technical workshop aimed to identify special and/or unique marine areas (SUMAs) in Tonga. Therefore it explicitly focused only upon the marine environment. Tonga has many very important and special terrestrial sites, (e.g. Niuafu'ou and the forested areas of Niuatoputapu) however these were not the purpose of this workshop and the data and expertise required to identify special, unique terrestrial areas were not available in this marine workshop.

2.1 DATA GATHERING

The Government of Tonga, together with the MACBIO project team, had spent two years collating, assessing, preparing and mapping open source and freely available data on, amongst other things, the special and/or unique marine features of Tonga. The data available for use at the workshop, both in electronic and hardcopy format, are listed in Appendix 1. In total, there were 28 datasets available for use in the workshop, of which 17 were related to biodiversity and 11 were related to human use of marine areas. All were available electronically and as hardcopy maps. All the data have been stored with associated metadata using the ANZMEt Lite (www.anzlic.gov.au/resources/metadata) standard and have been delivered to all interested parties, including Government Departments, in Tonga. These data and maps can also be accessed via the MACBIO website (http://macbio-pacific.info/).

2.2 WORKSHOP AND ADDITIONAL CONSULTATIONS

Workshop participants were chosen based upon their expertise and are listed in Appendix 2. These participants (and other contributors) have marine expertise to do with one or more of the following: inshore and offshore fish and other species, marine habitats and environments, high biodiversity areas, whale areas, hydrology, findings from deep sea mineral explorations, oceanography, ports, fisheries, marine research, and social issues.

The workshop agenda is presented in Appendix 3. Participants were told to define marine areas for Tonga that were biologically and/or physically special or unique. In addition to the data described above, participants were provided with worksheets to complete for each site identified (Appendix 4) as well as maps of Tonga at roughly three scales: ocean-wide (1: 3.1 million scale), Tonga divided into five "strips" from top to bottom with one island group per strip but including adjacent waters out to the provisional Exclusive Economic Zone (EEZ) boundary (scales from 1: 2 million to 1: 1 million), plus other hardcopy maps which "zoomed in" on each island group (roughly at scales from 1: 300 000 to 1: 11 000 scale) (for full list of response maps see Appendix 4). These were for participants to mark the geographic boundaries of the sites they had identified.

The workshop required participants to provide, per site they identified:

- A site name;
- A geographic description of the site's location and boundaries;
- A justification. This may include information as to whether areas support, or are likely to support, rare, vulnerable or unusual habitats or species, threatened species, important life stages of key species, endemic species, physically or biologically outstanding attributes (e.g. unique geomorphology, high species diversity or high productivity);
- Sources. These could be peer reviewed scientific papers, peer reviewed reports, other reports, data or personal communications from participants or other expert sources;
- Legal or other obligations to protect the site or species within the site;
- Follow-up tasks required to finalise description of the site.

The participants were divided into three groups to make decisions about what they considered biophysically special and/ or unique sites for Tonga. Each group had available: the electronic data on a GIS with a screen and GIS technician to access and map any data they wished to view, a facilitator, hard copy maps, worksheets and response maps upon which to draw their chosen sites. Each group also nominated a rapporteur. At the end of the workshop, each group presented their findings to a plenary session.

Preliminary workshop findings were also presented to the Ocean 7. They requested that the final report access any additional research, data and information to both inform the descriptions of the sites identified in the workshop, and to consider any additional sites that the workshop had not identified. This involved following up on potential sources of information, including experts who were not able to attend the workshop. Information was collected through online libraries that linked to peer-reviewed journals and other online "grey" (or unpublished) literature. Species-specific obligations were supplemented by compiling a list of species occurring in Tongan waters that are listed in national and international conservation legislation (Appendix 5).

All spatial data and information collected during the workshop were digitized and a map of each identified site was created. A geographic boundary for each site was created in GIS from the minimum bounding geometry enclosing each site. The diagonal coordinates (latitudes/longitudes) generated from this process were used to identify the geographic boundaries for the special and unique marine areas of Tonga.

2.3 RATING OF TONGA'S SPECIAL, UNIQUE MARINE SITES

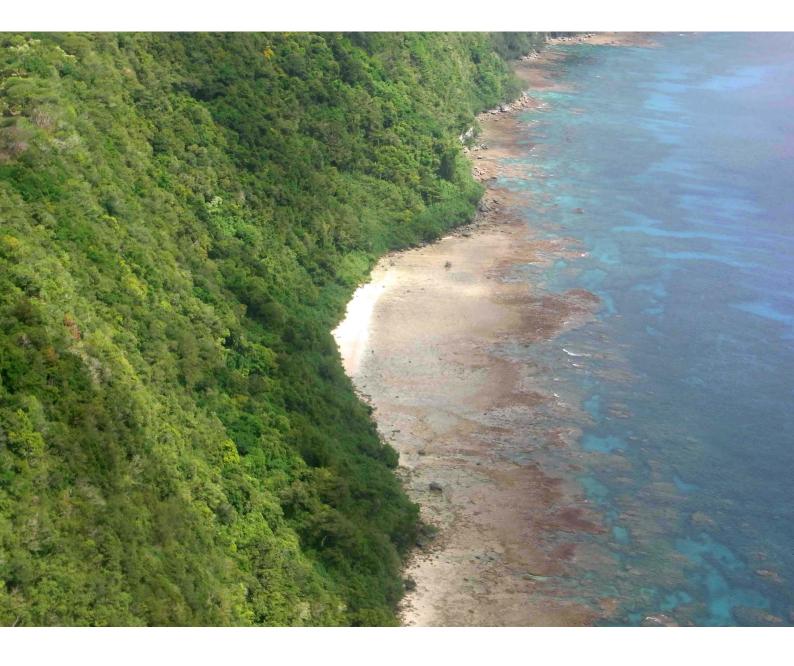
Tonga has a vast range of marine biophysical features, some which are well known and understood, some which are special, some of which are unique and some of which may require special consideration when planning forward for the optimal use and management of Tonga's ocean. There is not equal justification for, or information about, the special, unique sites identified during the workshop and in this report. Data from the workshop and other sources were used to systematically assess each site against the following criteria:

- a. Geographic explicitness how well-defined and well-justified the boundaries of the site are. All sites identified exclude land above the high water mark. For example, if a site demarcates a ring around a fringing reef of an island (e.g. Site T 10 Ata' Island), then the marine special, unique site indicated includes the entire marine environment within that ring up to high water mark but does not include the island itself.
- b. Amount, detail and nature of justification (including whether there is clear, abundant and convincing information to indicate whether the area is likely to support rare, vulnerable or unusual habitats or species, threatened species, endemic species, important life stages of key species, or physically or biologically outstanding attributes e.g. unique geomorphology, high species diversity or high productivity). If the information provided is only generic to the type of site being described, and not specific to the site/s located in Tonga, then the score under the criterion "Justification" will be diminished by ½ to a whole of a point. A ½ point will be subtracted from the score it might otherwise have received if the site is one where, globally, there's not much information (e.g. many offshore, deeper water sites). A full point will also be subtracted if, globally, there is a wealth of information and so the chances of having site-specific information is greater (e.g. coral reefs).
- c. Information source(s) how reliable and verifiable the information source(s) are, and how many of them are available. Information is more likely to be correct and can be cross-referenced and triangulated if multiple information sources are used. All the sites will have at least one, locally specific, expert source, namely, one of the workshop participants; some have more expert sources. Aside from this, for the offshore, deeper water sites it is well understood that data, globally, are sparse and thus, for these sites, generic sources may be considered to count as sources in this criterion. For globally well studied habitats, such as coral reefs or mangroves, for which there are literally thousands of global "sources", only locally specific sources contribute to this criterion.
- **d.** National or international obligations are the areas associated with species or habitats for which the country has international obligations (e.g. under Conventions) or national obligations (e.g. under law).

Experts then rated proposed special, unique sites as scoring relatively low (1), medium (2) or high (3) against each of the four criteria. Special and/or unique areas scoring highly against all criteria ranked more highly overall. This meant that these sites had better and more reliable descriptions and were also likely to be relevant to the country's existing environmental

protection obligations. If scoring highly against just some of the criteria, they were nominated as medium-level special or unique areas. If scoring poorly against all criteria, areas were not identified as special or unique for planning purposes.

The scoring system used is described in the table below. Three points are allocated as the top "score" for each of the four criteria (justification, geographic explicitness, source – including both type and number of sources – and national and international obligations that pertain to the site). The highest score possible is 12; the lowest is four.


Geograp	hic Explicitness
1	Boundaries are quite loosely defined
2	Boundaries broadly match the features
3	Boundaries exactly match the biophysical features identified as important
Justifica	ion
1	One or two reasons (e.g. presence of organisms) justifying the site, with generic information sources
1 ½	One or two reasons (e.g. presence of organisms) justifying the site, with site-specific information sources
2	Three or four reasons justifying the site, with generic information sources
2 ½	Three or four reasons justifying the site, with site-specific information sources / five or more reasons justifying the site, with generic information sources
3	Five or more reasons justifying the site, with site-specific information sources
SOURCE	
Source T	ype
1⁄2	Only expert advice from workshop participants
1	No peer reviewed papers are available but there are good reports available
1 ½	At least one peer reviewed scientific paper or report discusses this site (for inshore sites) – or, for offshore sites, good generic sources describing the main feature(s) of the site
Source N	lumber
1⁄2	One source
1	Two to three sources
1 ½	Four or more sources
Internatio	onal/ National Obligations
1	One species / habitat with obligations
2	Two or three species/habitats
3	More than three species/habitat with obligations

2.4 OVERALL PRIORITISATION

The rating of the criteria were added up to give an overall score out of 12. A higher score means a site has a higher rating.

2.5 LAYOUT OF SITE INFORMATION IN REPORT

For each site identified in the workshop, we provide, in this report, the following information: a site name, and if it is a lesser known type of habitat we provide a broad definition of the habitat; a map, a summary table with the name and score of the site, the diagonal coordinates (latitudes/longitudes) – see Section 5.2 for details – a geographic description, a descriptive justification for the inclusion of the site, with relevant references, the number and type of sources used and the international and national obligations pertaining to the site and its key attributes.

3. RESULTS

3.1 LARGE-SCALE BIOPHYSICALLY SPECIAL, UNIQUE MARINE SITES

These are sites that extend throughout large parts of the coastal and ocean environment of Tonga. This section describes all the deeper-water and the larger-scale nearshore special, unique marine sites.

3.1.1 SITE L 1: Seamounts and ridges around 'Ata Island

Seamounts are "a discrete (or group of) large isolated elevation(s), greater than 1,000m in relief above the sea floor, characteristically of conical form. Ridges are defined as "an isolated (or group of) elongated narrow elevation(s) of varying complexity having steep sides, often separating basin features"(IHO, 2008a). Abyssal hills are defined by the IHO (2008a) as "An isolated (or tract of) small elevation(s) on the deep seafloor". They occur on abyssal seafloors (i.e. at 3,000–6,500m depth). Hills on the seabed at abyssal depths having peaks that rise >300 to <1,000 m above the seafloor were mapped as abyssal hills (Harris et al., 2014); they are abundant between the mid-ocean ridges and the comparatively flat abyssal plains.

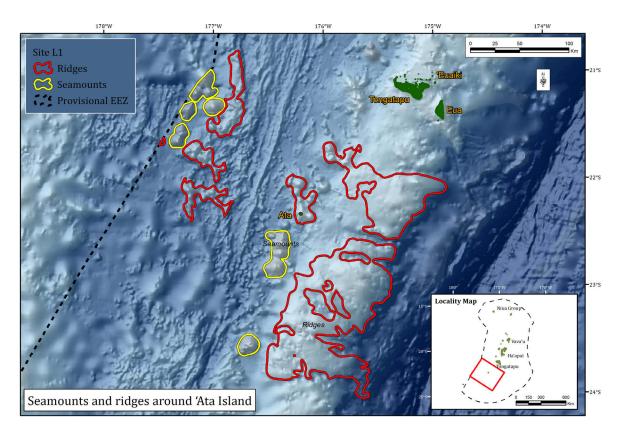


FIGURE 1. SITE L 1: Seamounts and ridges around 'Ata Island

TABLE 1. SITE L 1: Seamounts and ridges around 'Ata Island. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Score
Large-scale special, unique site	Seamounts and ridges around 'Ata Island	L1	9.5

Geographic boundaries

(-20.7534, -176.882) and (-24.3272, -175.769)

Geographic description (score = 2)

Tonga has 43 seamounts, approximately seven ridge systems (although more ridges are present that are not in systems) and some deep underwater hills running from the northeast to south south-west, as described by Harris et al. (2014) (Figure 1). Technically, seamounts and ridges are subsets of abyssal mountains (Harris et al., 2014). The seamounts in Tonga have been classified: there are 26 seamounts described as intermediate, small, moderately tall and shallowest; 10 seamounts are short with moderately deep peaks; two intermediate, large tall and deep peaks; two are large and tall with shallow peaks; one small and short with very deep peaks, deepest type; one small and short with very deep peaks, shortest; and one large with tall with shallow peak but larger seamount.

Justification (score = 2.5)

Seamounts and ridges in this region have been identified as being relatively nutrient rich compared to surrounding waters (pers. comm. A. Palaki). Many seamounts exhibit a positive biological cascade effect with elevated levels of primary productivity, leading to higher concentrations of zooplankton, which supports high abundance of benthic fauna and consequently large populations at higher trophic levels (Stone et al., 2004). Other taxa living on seamounts can include biogenic habitat-forming corals and sponges, anemones, crabs, sea stars, sea urchins, brittle stars, sea cucumbers and feather stars (Baker and Beaudoin, 2013; Clark et al., 2011; CSIRO, 2008).

Seamounts and ridges have steep slopes which can cause the upward movement of nutrients from the deep ocean (upwellings) and create "hotspots" of biodiversity and productivity. In some instances, they host deepwater coral communities and attract deepwater and pelagic species such as tuna, deep-water snapper, sharks, whales and dolphins (Baker and Beaudoin, 2013; Morato and Clark, 2007; Stone et al., 2004). Longline fishing vessels often target seamounts specifically, due to their high productivity attracting aggregations of tuna (Passfield and Gilman, 2010). This higher productivity makes them important for deepwater bottom fish including snapper and the bluenose warehou (*Hyperoglyphe antarctica*) – although the latter is known only south of 'Ata (pers. comm. T. Halafihi, A. Palaki; Clark, 2013).

Many seamounts in Tonga (Baker and Beaudoin (2013) referred to many seamounts in the Pacific Island Countires) extend to within 800 to 1,000m of the surface (Figure 1), which is within the depth range of the deep scattering layer (DSL). This is a mix of zooplankton (such as shrimps, euphausiids, and copepods), mesopelagic fish (such as lanternfish) and small squid that migrate vertically upwards at night and down during the day. Where the DSL makes contact with the seamount summit and upper flanks, there is a zone of interaction between pelagic and benthic ecosystems. Other seamounts extend into the photic zone, where light penetration allows growth or aggregation of light-dependent organisms (Baker and Beaudoin, 2013).

The seamounts, ridges and the seascapes between them, including more inshore areas, have an important role for humpback whales during migration (pers. comm. T. Halafihi; Garrigue et al., 2015). The seamounts and ridges also are, probably, breeding locations, resting areas, navigational landmarks or even supplemental feeding grounds for whales (pers. comm. T. Halafihi; Garrigue et al., 2015). Seamounts are also thought to be important aggregation areas for other highly migratory species such as tuna, billfish and oceanic sharks (Morato and Clark, 2007). Telemetry studies have shown a high levels of individual fidelity to specific sites, such as seamounts, by highly migratory marine species, and basin-wide movements can be directed towards these locations (Luschi, 2013).

The deepwater seamount communities often have a high level of endemism, and are likely to have different fauna on the leeward and windward sides (Marchese, 2014; Stone et al., 2004). Species may be restricted to a chain of seamounts, to a few adjacent seamounts or even to a single seamount (Stone et al., 2004). Rates of endemism vary, from a low of 5–9% up to 52% (Stone et al., 2004). Richer de Forges et al. (2000) found that adjacent seamounts in New Caledonia shared only 21% of species; and seamounts approximately 1,000km apart shared only 4% of species. However,

seamounts and seamount-like features (e.g. ridges) don't have to be isolated or large to support high levels of endemism. Work by Koslow et al. (2001) and Rowden et al. (2002) (both in Stone et al. (2004)) showed that even relatively small underwater hills (100 to 400m above the seafloor) had rates of endemism of 15 to 35%. Work in Tonga by Halafihi (2015) using chemical analysis of otoliths supports the premise of relative isolation of populations on seamounts, finding independent populations of the flame snapper (*Etelis coruscans*) and crimson jobfish (*Pristipomoides filamentosus*) on seamounts in the north and south of Tonga.

How biodiversity, including endemism, varies on seamounts, ridges and hills with parameters such as depth, surface productivity, temperature, substrate composition, organic flux to the seafloor, currents, oxygen level, latitude and other factors is unknown and unpredictable (Baker and Beaudoin, 2013; Stone et al., 2004). In Tonga, Halafihi (2015) found different chemical signatures in otoliths of juveniles and adults of the flame snapper and crimson jobfish, indicating that these deepwater fishes use different parts of a seamount at different life-stages. Species new to science continue to be discovered each time seamounts are sampled and, due to the longevity of many of those species, they may provide valuable information regarding the workings of the ocean and the source of some parts of life on Earth (CSIRO, 2008; Stone et al., 2004). Harris et al. (2014) has classified the seamounts of the world based upon at least some of the physical parameters likely to determine the nature and diversity of species inhabiting them (e.g. depth of seamount base and summit, slope, size, height above seabed, shape of summit, etc). Globally, 11 types of seamounts occur; Tonga has three types of seamounts (Figure 1) (Harris et al., 2014)192 separate polygons in 29 geomorphic feature categories, used here to assess differences between passive and active continental margins as well as between 8 major ocean regions (the Arctic, Indian, North Atlantic, North Pacific, South Atlantic, South Pacific and the Southern Oceans and the Mediterranean and Black Seas.

Of the species on seamounts that are not endemic to that seamount, research has shown genetic connectivity in animals (e.g. tuna and other fish) between seamounts, and between seamounts and nearby non-seamount areas (Stone et al., 2004). This indicates that some populations of animals found on seamounts are unlikely to be self-sustaining.

The area around the centre of seamounts identified as important is generally circular, with a diameter of some 25–35km. The Capricorn Guyot is an exception, with a 55km diameter of important biodiversity area (see below – Site V 7: Capricorn seamount – for specific site information) (Baker and Beaudoin, 2013). This diameter is biologically important due to the connectivity discussed above and the variation, with depth and related parameters, of the biodiversity living on the flanks of seamounts and the surrounding area (Baker and Beaudoin, 2013).

Seamounts often host uncommon forms of marine life which, like many deepwater species, are very slow-growing and long-lived (Stone et al., 2004). Combined with highly variable recruitment due to isolation and intermittent dispersal from other seamounts (if the species are not endemic to that seamount), this results in very delicate habitats vulnerable to over-exploitation and with poor recovery potential (Baker and Beaudoin, 2013; Stone et al., 2004). The seamounts in Tonga have been noted to include endangered species such as Mohuafi (the convict grouper, *Epinephelus octofsciatus*) and *Palumalau* (the ruby snapper, *Etelis carbunculus*) (pers. comm. *T. Halafihi*).

See a video on seamounts here: https://www.youtube.com/watch?v=0NUaxdxt2sE

See pictures from seamounts here: http://ngm.nationalgeographic.com/2012/09/seamounts/interactive-gallery

Type and number of sources (score = 2)

No documented references were found for any of the individual seamounts, ridges or hills in Tonga, however, this report draws upon six relevant peer reviewed papers and four reports whose findings apply to all seamounts, including those in Tonga. There was also information from three Tongan experts specific to Tonga's seamounts.

Obligations (score = 3)

There are obligations to protect and sustainably manage many fish species, including some associated with seamounts, within the Fisheries Management Act 2002 and subordinate regulations, including terms and conditions associated with licenses. The Environment Management Act 2010 also describes obligations to protect some of the features associated with seamounts. Humpback whales and some sharks found around seamounts are on the IUCN Red List (IUCN, 2016) and listed under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). There are also obligations for the protection of sharks under Tonga's National Plan of Action for Sharks 2014–2016, including sharks typically known to aggregate around seamounts (e.g. scalloped hammerhead shark (Kimley Pers. Comm. See http://voices.nationalgeographic.com/2016/01/12/sharks-use-seamounts-as-compass-to-navigate-undersea/) (Tonga Fisheries Division & Pacific Islands Forum Fisheries Agency, 2013).

3.1.2 SITE L 2: Tonga Trench and Tonga Ridge

A trench is "a long, narrow, characteristically very deep and asymmetrical depression of the sea floor, with relatively steep sides" (IHO, 2008a). Trenches are generally distinguished from flat-bottomed troughs by their "V" shape in cross section (IHO, 2008a). Ocean trenches are the deepest parts of the ocean, commonly 6 to 10 km in depth (IHO, 2008a). For a definition of ridges see Site L 1: Seamounts and ridges around 'Ata Island.

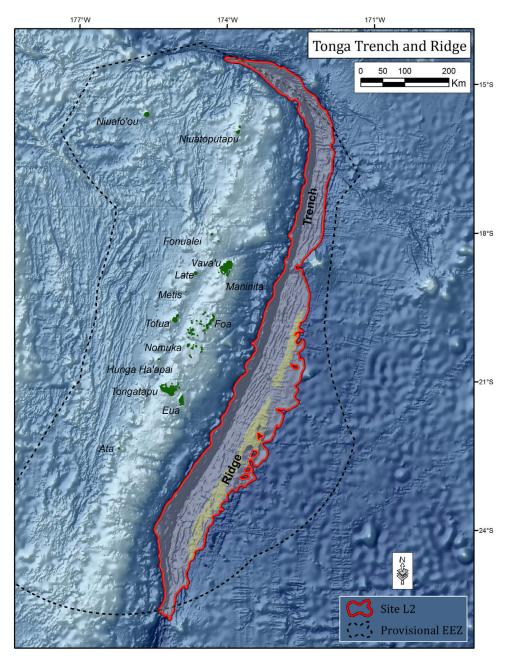


FIGURE 2. SITE L 2: Tonga Trench and Tonga Ridge

TABLE 2. SITE L 2: Tonga Trench and Tonga Ridge. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Score
Large-scale special, unique site	Tonga Trench and Tonga Ridge	L2	10

Geographic boundaries

(-25.7201, -175.745) and (-14.7971, -171.5396)

Geographic description (score = 2)

The Tonga Trench is a submarine trench in Tonga of about 1,375 km in length, forming the eastern boundary of the Tonga Ridge. Their boundary is defined by Harris et al. (2014) and Figure 2.

Justification (score = 2)

The deepest biozone in the oceans is the hadal zone (6,500–11,000m deep) of which the Tonga Trench is a part (Jamieson, 2011). The Tonga Trench and Tonga Ridge, together, constitute the northern half of the Tonga-Kermadec Arc, a structural feature of the Pacific seafloor completed to the south by the Kermadec Ridge and Trench. This latter feature has been the focus of some study (e.g. Jamieson, 2011; Lacey et al., 2016). The Tonga Trench has an average depth of 6,000 m and a width of about 80 km; it reaches a maximum depth, at Horizon Deep, of 10,882 m (only 180m less than the deepest part of earth, the Mariana Trench)(Jamieson, 2011; Raitt et al., 1955). This deepwater habitat contains unique communities with high levels of species endemism due to their geographic isolation (IHO, 2008b; Jamieson, 2011 K. Stone, pers. comm.). These species are adapted to conditions of extreme hydrostatic pressure, low temperature, an absence of light and limited food supply. However, these communities can be quite diverse, and even at depths >8,000m can include holothurians, amphipods, isopods, gastropods and polychaetes; most animal taxa are represented in the Tonga Trench (Jamieson, 2011).

Globally, in the hadal zone (i.e. deeper than 6,500m) over 1,000 species have been recorded, including fish (and excluding bacteria); some of these have been recorded from the Tonga Trench (Jamieson, 2015). Because trenchassociated animals are unable to pass through the adjacent relatively shallow ocean with vastly different conditions, trenches are biologically isolated from each other (IHO, 2008b; Lacey et al., 2016). Lacey et al (2016) found faunal assemblages in the Kermadec Trench which were distinct from the surrounding abyssal and bathyal depths and were correlated to hydrostatic pressure and particulate organic carbon flux.

In the Tonga Trench, hydrostatic pressure and temperature are the strongest drivers of intra-trench assemblage composition, with a unimodal pattern of species diversity, peaking between 4,000 and 5,000m (Lacey et al., 2016). Different species assemblages occupy different depths along the slope of the Tonga Trench, and this pattern is most likely carried through to the associated ridge system (Jamieson, 2015). Trench topography provides a unique setting with regards to food supply, because organic matter (food) is accumulated at the deepest trench axis (Jamieson, 2011).

The waters above the Trench and associated ridge system support migrating sperm whales (pers. comm. T. Halafihi, CBD, 2011). Sperm whales are the largest of the toothed whales, and the waters over submarine canyons are their preferred habitat, as they undertake deep dives to hunt for food, spending only around 13% of their time on the surface (Whitehad, 2002). Their association with upwellings and geomorphic features such as steep seamounts and canyons makes them useful indicators of hotspots of biodiversity and productivity (Mannocci et al., 2015). The Tonga Trench is specifically named as one of the features in the Ecologically and Biologically Significant Area (EBSA) 26 – Tongan Archipelago – for its extreme depth and unique fauna (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 3)

The Tonga Trench and Ridge have been studied from a geological perspective since the 1950s (Crawford et al., 2003; Foley and Long, 2011; Raitt et al., 1955), because of the feasibility of such research and resource-driven interests. Much less work has focused upon the biology of the Tonga Trench and Ridge as distinct from oceanic trenches and ridges in general. However, this report draws upon six relevant peer reviewed papers (two of which concern sperm whales), three reports (including the EBSA report) and the information from one Tongan expert attending the workshop.

Obligations (score = 3)

The Fisheries Management Act 2002 and Environment Management Act 2010 have relevant legislation that pertains to the protection of this habitat and/or the species it supports. Whales, which may be using the trench or associated ridge system during migration, are on the IUCN Red List and CITES listed.

3.1.3 SITE L 3: Inshore marine areas

Inshore marine areas are those immediately seaward of the coast. Inshore marine areas can encompass a variety of habitats, including rocky substrata, sand or other soft sediment, mangroves, seagrass beds or coral reefs. In Tonga this inshore area is often understood to extend to the outer edge of the fringing reefs around islands.

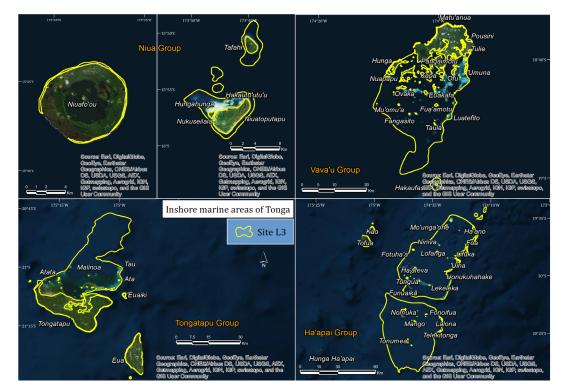


FIGURE 3. SITE L 3: Inshore marine areas

Geographic Cluster	Site Name	Site Code	Overall Score
Large-scale special, unique site	Inshore marine areas	L3	10

Geographic boundaries

Tongatapu (-20.7626, -174.9531) and (-21.5082, -175.3428); Ha'apai (-19.5018, -174.1994) and (-20.7345, -174.9672); Vava'u (-18.9770, -174.2289) and (-18.5855, -173.8759); Niuas (-15.5583, -175.6751) and (-15.9941, -173.7478)

Geographic description (score = 1)

This site encompasses all coral reef, seagrass and mangrove areas surrounding Tonga's islands and island groups. For the purposes of this assessment, the site will include these three habitats to the outer edge of the reef. However, there are not complete data on the location of all seagrasses and mangroves in Tonga and this site's geographic boundaries are very broad-based.

Justification (score = 3)

Coral Reefs: Coral reefs are perhaps the best studied of Tonga's inshore marine habitats, because of their high biodiversity, conservation and economic value. Tonga's National Biodiversity and Action Plan (NBSAP) and subsequent reviews list coral reefs as priority habitats (Department of Environment, 2006; Geocare & Petroleum Consult Ltd, 2010; Ministry of Lands, Environment, Climate Change and Natural Resources, 2014). Coral reef biodiversity Tonga lies on a gradient between the richest reefs in the Coral Triangle, and more depauperate towards the eastern Pacific (Atherton et al., 2015; Randall et al., 2003); however, greater survey efforts may reveal higher species richness than expected, given the large variety of available habitats.

There is a general consensus that, despite being the best studied of Tonga's marine habitats, coral reefs in Tonga have been poorly studied compared to many other coral reefs. Past surveys of coral reefs in Tonga have focused upon coral (Adjeroud et al., 2013; Holthus, 1996; Lovell and McLardy, 2008; Lovell and Palaki, 2000), commercially exploited invertebrates by Chesher (1993), Okamoto (1984) and Pakoa et al. (2013) and reef fishes by Randall et al. (2003). The first comprehensive underwater survey focusing on fish communities was conducted by the Secretariat of the Pacific Community (SPC) in Vava'u in 2004 (Kulbicki, 2004), under the DemEcoFish project. Most recently, the Living Oceans Foundation surveyed coral reefs of Niuatoputapu, Ha'apai and Vava'u (Bruckner, 2014), a Rapid Biodiversity Assessment (BIORAP) survey included a snapshot of coral reef organisms of Vava'u (Atherton et al., 2015) and a baseline survey for Special Management Areas also surveyed coral reefs in Vava'u (Ceccarelli, 2016).

The BIORAP in Va'vau recorded 206 species of hard corals in 55 genera (Fenner, 2015), and it is expected that Tongan coral reefs overall support approximately 300 species of hard corals (Geocare & Petroleum Consult Ltd, 2010). The most abundant coral genera were *Acropora, Montipora, Porites, Pavona* and *Fungia*. Adjeroud et al. (2013) recorded 37 hard coral genera around Tongatapu, dominated by *Montipora, Acropora* and *Porites*. These coral genera are especially important for creating complex, 3-dimensional habitat for invertebrates and fishes (Chabanet et al., 1997). Spatial patterns in the coral assemblages in Tongatapu suggested a strong reliance of local (within-island) recruitment sources (Adjeroud et al., 2013) from brooding coral species (Magalon et al., 2005). High numbers of recruits suggested a good potential for local reef recovery in the short-term, if stressors that inhibit the survival of juvenile corals are absent or removed (Adjeroud et al. 2013).

Coral reef macroinvertebrates are an important fishery resource in Tonga, with some species becoming severely depleted over the last few decades. The recent BIORAP survey of Vava'u recorded 249 species from 101 families and 146 genera, dominated by molluscs (Bauman, 2015). Estimates of abundance for taxa like sea cucumbers can be misleading, because despite high abundances, the proportion of commercially valuable species is very low (17%) (Bauman, 2015).

Randall et al. (2003) recorded 1,162 shore and reef fish species in their survey of Tonga; this is considered a highly diverse fish community, and further surveys are likely to add species to the list. The most recent fish surveys reported 406 species from the reefs of Vava'u (Stone, 2015). Reef fish fauna was dominated by species from relatively low trophic groups, with high abundances of damselfishes (Pomacentridae) and wrasses (Labridae), and low numbers of piscivores and carnivores, including sharks (Stone, 2015). Generally, the fish community shows strong signs of overfishing, both in terms of trophic structure and size; only small size classes are represented in most surveys (Imirizaldu, 2015).

Reef structure is highly influential in determining the diversity, density and condition of coral reef organisms. The recent Vava'u BIORAP found that moderately exposed reefs had the highest number of coral species, followed in descending order by exposed reefs, sheltered reefs, limestone drop-offs and volcanic reefs (Fenner, 2015). The lowest cover of coral in the Vava'u group of islands (1.9%) was recorded on northern volcanic reefs at Fonualei Island, and the highest on moderately exposed reefs in the southern part of the Vava'u island group (70.6%) (Webster, 2015).

As human activities degrade coral reefs worldwide, reefs in good condition become more valuable. Reefs close to the larger islands and inhabited coastlines are more heavily influenced by terrestrial activities (Bruckner, 2014), whilst isolated reefs tend to be more pristine and species-rich (Kulbicki and Bozec, 2005). However, some ambient levels of terrestrial sediment input are natural, and it is only close to human population centres that land-based run-off and associated nutrient enrichment and pollution become problematic (Atherton et al., 2015).

Coral reefs and other inshore habitats in Tonga are subject to numerous stressors, including severe climatic disturbances such as cyclones and temperature-induced bleaching, crown-of-thorns seastar (COTS) outbreaks, overharvesting, coastal pollution and sedimentation (Adjeroud et al., 2013; Chin et al., 2011; Lovell and Palaki, 2000; Pagad, 2013; Webster, 2013). Major cyclones are reported to have affected Tonga in 1982, 1995, 1997, 1999, 2000 and 2014, and Tongan reefs suffered a major bleaching event in 2000 (UNEP-WCMC, 2015). Outer islands and island groups such as Vava'u are considered to be under less pressure than the main island of Tongatapu (Adjeroud et al., 2013).

These more isolated, unimpacted coral reefs may be more resilient (able to return to their previous state after suffering damage) than those already under various degrees of human pressure (McLean et al., 2016). Resilient coral reefs are becoming more important and valuable, as their ability to recover from natural and climate change induced disturbance events confers to them a role of refuges and sources of larvae that assist the recovery of more damaged reefs (Holbrook et al., 2016). Typically, coral reef resilience is expected to be higher on reefs further from human activities (McLean et al., 2016), with intact trophic structure, especially populations of predators and herbivores (Holbrook et al., 2016; McLean et al., 2016) higher diversity (Ferrigno et al., 2016), greater structural complexity, deeper habitats acting as refuges, higher densities of juvenile corals and low nutrient loads (Graham et al., 2015). Remote and isolated coral reefs also have a

greater likelihood of hosting unique assemblages, genetically distinct populations, or even endemic species (Hobbs et al., 2013; Hughes et al., 2002).

Seagrasses and mangroves: Seagrass beds and mangrove forests are also key features of Tonga's inshore marine habitats. Seagrass beds in Tonga are well-developed in nearshore areas, usually on sandy substrata between patches of coral reefs. Tonga has four known species of seagrass: *Halophila ovalis, H. ovalis ssp. bullosa* (endemic to Tonga, Fiji and Samoa), *Halodule uninervis* and *Syringodium isoetifolium* (Ellison, 2009). Seagrass beds are food sources and key habitats for numerous marine species, including protected species (e.g. green turtles) and species of commercial or subsistence value (e.g. emperors). Many species that are ecologically and commercially important, especially invertebrates, use seagrass beds as nurseries (McDevitt-Irwin et al., 2016). Seagrasses contribute to the primary production of shallow marine habitats, serve as nursery habitats for fish and invertebrate species that may complete their life cycle elsewhere, and they also stabilize sediments, hence contributing to coastal protection (Norlund et al., 2016). They are vulnerable to poor water quality, excess sedimentation and destructive fishing (Ellison, 2009).

Mangrove forests are highly specialized and adapted to coastal and intertidal environments. They provide nursery grounds for fish and crustaceans, feeding and breeding grounds for birds, shoreline protection, sediment and nutrient trapping of runoff and habitat for a diverse assemblage of mangrove specialist species. They are a key component in the maintenance of water quality for nearshore marine environments, and are ecologically linked to seagrass beds and coral reefs. Tonga had an area of 1,000 ha of mangroves in the 1980s, but coastal reclamation, particularly on shores adjacent to Nuku'alofa in Tongatapu, have dramatically reduced mangrove cover since then. The World Atlas of Mangroves (2010) gave an estimate of mangrove areas of 336 ha for Tonga. An earlier estimate stated the total area of mangroves at 10 km², representing 1.33 % of Tonga's total land area of 750 km² (MESCAL, 2013). Eight species of mangroves are found in Tonga, with a dominance of *Rhizophora mangle, Rhizophora stylosa (Tongolei/Tongo), Bruguiera gymnorrhiza (Tongo ta'ane), Excoecaria agallocha (Feta'anu)* and *Lumnitzera littorea (Hangale)* (Ellison, 2009; MESCAL, 2013).

Inshore marine areas gain the best biodiversity and productivity value when all three ecosystems (coral reefs, seagrass beds and mangroves) are present in close proximity (Guannei et al., 2016); this is the case in many areas of Tonga (Figure 3). When connectivity between these habitats is high, it also increases their productivity and diversity, and therefore their conservation value, as a number of species use two or three habitats at different times during their life cycle (Olds et al., 2016). This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 3)

Sources included four peer-reviewed papers and 14 reports specific to Tonga, three datasets specific to Tongan reefs, and five peer-reviewed papers relevant to the site, but not specific to Tonga. The sources are much better defined for coral reefs than for the other inshore habitats. There are many gaps in the geographic coverage of references for the inshore marine areas of Tonga, but it is possible to extrapolate from research conducted in Tongan waters, and from general knowledge gathered elsewhere.

Obligations (score = 3)

A review of Tonga's NBSAP estimated that 40% of Tongan reefs are currently threatened, and outlined findings of decreased coral cover, reef fish abundance and size between 2006 and 2009 (Department of Environment, 2006); threats included overfishing, destructive fishing methods, poor land management, pollution and global climate change (Geocare & Petroleum Consult Ltd, 2010). The NBSAP discussed a variety of species of concern, due to rarity, suspected endemism, or overharvesting. For instance, the most recent coral biodiversity survey found 33 species with an elevated risk of global extinction, 17 species which have been proposed for listing under the US Endangered Species Act (ESA), and five species which are already listed under the ESA (Fenner, 2015). These listings, whilst for occurrances of the species in US waters, provides some indication of their status more broadly, including in Tonga. Some of Tonga's species of bony fishes, 9 cartilaginous fishes, 228 stony corals, 4 hydrozoans, 49 birds, 21 mammals, 13 reptiles, 8 crustaceans, 15 molluscs, 13 flowering plants, 8 monocots, 2 mangrove species, and one conifer, cycad and fern (Pagad, 2013). Ten percent (68 species) of these species were classified as 'threatened' – that is either 'Critically Endangered (CR)' (5), 'Endangered (EN)' (6) or 'Vulnerable (VU)' (56); another 75 species were classified as 'Near Threatened (NT)'. Of the 'threatened species' 45 are stony corals, five seabirds, four molluscs, three cartilaginous fish, five reptiles, two mammals, two flowering plants and one conifer and cycad (Pagad, 2013).

Coral reefs, mangroves and seagrass beds are protected by national and international legislation, including the Convention on Biological Diversity. Many species that use these habitats are harvested and are therefore covered in the Fisheries Management Act 2002 and Environment Management Act 2010. There are obligations for the protection of sharks under Tonga's National Plan of Action for Sharks 2014–2016. The habitats themselves are protected through the National Spatial and Management Act 2012 (mangroves) and the Environment Impact Assessment Act 2003 (all habitats). The National Forest Policy (2008) has provision for the protection of mangroves and other wetland ecosystems. Corals, some mobile invertebrates (e.g. sea cucumbers), some fishes (e.g. groupers, sharks) and turtles are on the IUCN Red List and protected under CITES (see above).

3.1.4 SITE L 4: Hydrothermal vents

Hydrothermal vents are the result of seawater percolating down through fissures in the ocean crust in the vicinity of spreading centers or subduction zones (places on Earth where two tectonic plates move away or towards one another) (NOAA, 2016). The cold seawater is heated by hot magma and re-emerges to form the vents (NOAA, 2016).

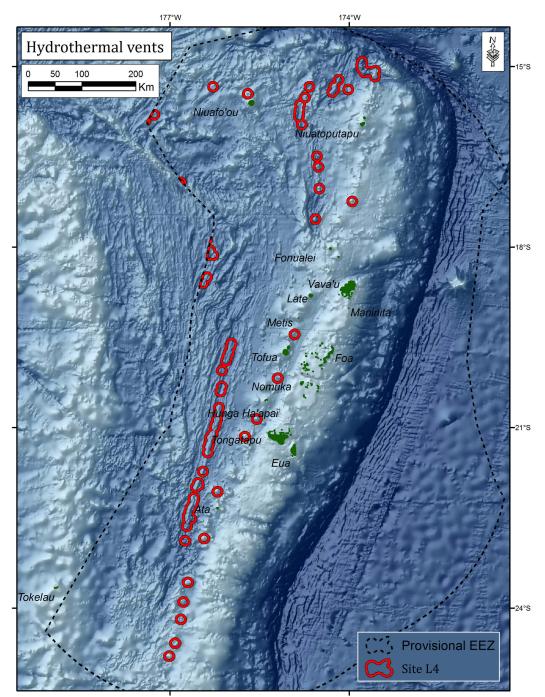


FIGURE 4. SITE L 4: Hydrothermal vents

TABLE 4. SITE L 4: Hydrothermal vents. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Score
Large-scale special, unique site	Hydrothermal vents	L4	9.5

Geographic boundaries

(-24.5194, -178.9551) and (-14.9045, -173.4468)

Geographic description (score = 3)

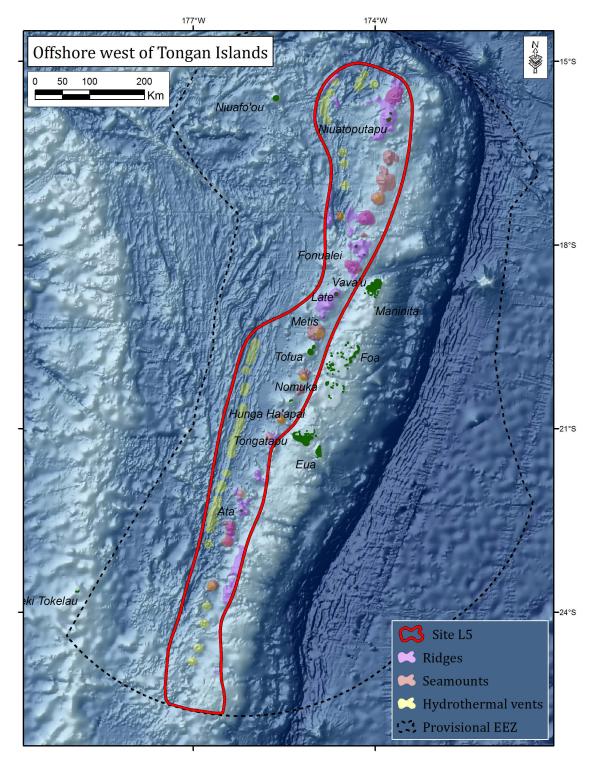
There are at least 27 confirmed active hydrothermal vents in Tonga (Beaulieu et al., 2013), almost all located in the submerged hills to the west, south and north of the island chain.

Justification (score = 2.5)

Seawater in hydrothermal vents may reach temperatures of over 370° C (NOAA, 2016). Hydrothermal vents have unique ecosystems which derive energy from volcanic gases rather than sunlight (https://www.cbd.int/doc/meetings/ mar/ebsaws-2014-01/other/ebsaws-2014-01-azores-brochure-en.pdf Accessed 3 May 2016). These areas are very productive although small in spatial extent and relatively ephemeral – perhaps lasting some decades (Vrijenhoek, 1997). The size of the vent communities is small due to reliance upon the reach of the energy release from the volcanic activity (Vrijenhoek, 1997). Their ephemeral nature is inherent due to the reliance upon that volcanic activity, which moves as the tectonic plates of the earth move (Vrijenhoek, 1997). Whilst exact locations of extant hydrothermal vents may move, they will always be located at spreading centres or subduction zones – where magma meets the sea. Biomass is high, but as most of the animals are unique to the vent environments, and endemic to the specific area, they are confined to small areas around the vents (Little and Vrijenhoek, 2003; Vrijenhoek, 1997). Different hydrothermal vents have also been shown to host different meio- and macrofaunal communities depending upon the specific environmental parameters (e.g. temperature, metal concentrations, concentrations of reduced chemicals, oxygen concentration, as well as level of variation in all of these parameters space and time) (Gollner et al., 2015). Also, whilst macrofaunal species occur primarily at vents and are generally restricted to this habitat, meiofaunal species are distributed more widely and evenly across proximate and distant basalt habitats and are less restricted only to extent vent habitats (Gollner et al., 2015).

New work shows the ecological linkage between dead hydrothermal vents and the adjacent environment – indicating potentially essential connectivity between these and other deepsea habitats (Klose et al., 2015). Hydrothermal vents have recently also been found to act as a recycling and decomposition systems for dissolved organic carbon (DOC), an important constituent of the global carbon pool (Hawkes et al., 2015). If the vents are disturbed, entire ecosystems can be destroyed very quickly. Experiments carried out in both the Peru basin and the Clarion Clipperton Zone show that even though mobile species may return after disturbance, sessile species do not recover (Bluhm, 2001; ISA, 1999; Kaneko et al., 1997; Thiel et al., 2001). Hydrothermal vents are specifically listed under EBSA 26 – Tongan Archipelago – with reference to their unique fauna and the presence of "living fossils" (Secretariat of the Convention on Biological Diversity, 2014).

A video from a Pacific hydrothermal vent (albeit the eastern Pacific) is available here: https://ocean.si.edu/ocean-videos/hydrothermal-vent-creatures


Photos of hydrothermal vent animals are available here: http://deepseaphotography.com/downloads/category/hydrothermal_vent_animals

Type and number of sources (score = 2)

The sources for hydrothermal vents found and used here includes one that is specific to Tonga (the relevant section of the EBSA report). The other source information is not specific to Tonga, but applies to all hydrothermal vents and includes four peer reviewed papers, a NOAA website and one of the experts from the workshop (A. Palaki pers. comm.).

Obligations (score = 2)

There is no specific legal framework to protect hydrothermal vents, but Tonga is a signatory to the United Nations Convention on the Law of the Sea (UNCLOS), which has regulatory frameworks relating to deep sea resource exploitation. http://eu-midas.net/sites/default/files/downloads/Briefs/MIDAS_brief_legal.pdf

3.1.5 SITE L 5: Offshore west of Tongan islands

FIGURE 5. SITE L 5: Offshore west of Tongan islands

TABLE 5. SITE L 5: Offshore west of Tongan islands. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Score
Large-scale special, unique site	Offshore West of Tongan islands	L5	7

Geographic boundaries

(-25.3387, -177.9137) and (-15.3726, -173.0659)

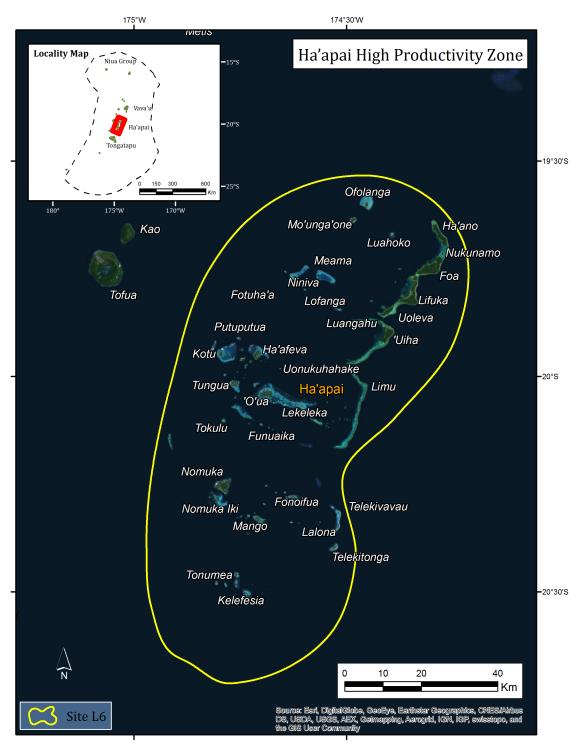
Geographic description (score = 1)

To the west of the Tongan island groups lies a stretch of deep water including seamounts west of the main Tongan Ridge, hydrothermal vents, volcanic islands and deep pelagic habitats (see individual definitions above). This is a large, elongated, oval-like area extending approximately 1,150 km from north to south and 185 km from west to east. It begins at around 15 0S at its northern-most point and extends south, south-west to 250S. Its western-most reach is at 1770 W, and its eastern-most extent at 1730W (Figure 4). It has an area of 120,728km², however, if removing features already identified in Sites L1 and L3, the remaining area is 105962km².

Justification (score = 1.5)

The offshore areas and seamounts west of the Tongan Ridge, including all of the hydrothermal vent areas (Beaulieu et al., 2013) and volcanic islands¹, are important as a corridor for migratory species such as marine mammals, pelagic fishes, oceanic sharks, and turtles (pers. comm. K. Stone, Garrigue et al., 2015). Because the seamounts, ridges, hills and hydrothermal vents form their own special, unique marine sites (Site L 1: Seamounts and ridges around 'Ata Island, and Site L 4: Hydrothermal vents) this site refers then to the remaining features within the offshore areas west of Tonga's island groups. This area includes the surrounding pelagic habitats and surrounding geomorphic features. The latter includes a plateau, basin, spreading ridge and rift valleys (Harris et al., 2014).

All migratory species that might use the seamounts or ridges in their traverse of the area (as per Site L 1: Seamounts and ridges around 'Ata Island) would also make use of the seas between those features to move from one seamount or ridge to the next. Telemetry studies are suggesting that oceanic migrants most likely rely on biological compasses and other simpler navigational tools to maintain a direction in the open sea between undersea landmarks, such as this offshore area (Luschi, 2013). Displacement experiments have provided evidence for the ability of seabirds and turtles to rely on position-fixing mechanisms, possibly involving magnetic and/or olfactory cues, not just physical cues (Luschi, 2013). This site overlaps with two EBSAs: 26 (Tongan Archipelago) and 07 (Monowai Seamount), notably for the presence of hydrothermal vents (Secretariat of the Convention on Biological Diversity, 2014).


Type and number of sources (score =1.5)

Very little is known about this offshore site. The EBSA report refers to the presence of hydrothermal vents in this area. Two peer reviewed papers from work on long-distance migratory species suggest the importance of oceanic "highways", and there is local Tongan expertise that supports the importance of this area.

Obligations (score = 3)

Some shark species, including oceanic species found in Tonga, turtles and whales are CITES listed and/or on IUCN's Red List of threatened species.

¹ Hydrothermal vents and seamounts, however, form their own Sites (see Sites 1 and 3).

3.1.6 SITE L 6: Ha'apai High Productivity Zone

FIGURE 6. SITE L 6: Ha'apai High Productivity Zone

 TABLE 6. SITE L 6: Ha'apai High Productivity Zone. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Score
Large-scale special, unique site	Ha'apai High Productivity Zone	L6	10

Geographic boundaries

(-20.5568777, -175.1635791) and (-19.64868026, -174.1348559)

Geographic description (score = 1)

This site encompasses the marine habitats surrounding the Ha'apai Island Group (see Geographic description below), from shallow corals reefs to deep areas of upwelling, which are recognised as being highly productive. The Ha'apai Group lies in the centre of the Kingdom of Tonga between (19035'S to 20030'S, 174015'W to 17506'W), extending 150 km from Hunga Ha'apai and Hunga Tonga in the southwest to Ofolanga and Ha'ano in the north and northeast, and covering an ocean area of approximately 10,000 km² (Thaman et al 1997). It consists of 64 islands, plus numerous rocks, sandbars, and reefs, and the now-submerged active volcanic island of Fonua Fo'ou (Falcon Island) which has appeared and disappeared numerous times over the past two centuries (Thaman et al 1997). The Ha'apai Group is assumed to extend to the territorial seas, that is, to 12nm from shore (Figure 6). The boundary of this site is only very coarsely defined.

Justification (score = 3)

From the 1986 census, Ha'apai had a population of 8,919 in 1,616 households, and there were 30 villages on the 17 inhabited islands (Thaman et al., 1997). The 64 islands of Ha'apai range in size from less than 1 ha (0.01km²) to 46.6 km² in the case of Foa Island. Most of the islands are quite small, with only four islands spanning areas over 10 km² (Thaman et al., 1997).

A broad description of the inshore marine areas of Tonga is given at Site L 3: Inshore marine areas, and much of this is relevant, although not specific, to Ha'apai. The entire Ha'apai Archipelago has disproportionately high productivity due to localised upwellings from the Tonga Trench and nutrient runoff from land (organic material). This promotes high concentrations of chlorophyll and high productivity within the Ha'apai Island Group. Recognising the value of this productivity, the Ha'apai Conservation Area extends from high water mark out to 12nm and was declared by Cabinet (pers. comm. A. Palaki).

Ha'apai itself hosts a variety of coral reef types in its relatively oligotrophic, and extensive, shallower waters, including a 130km barrier reef along the eastern edge of the group with uplifted and submerged sections, numerous fringing reefs, isolated patch reefs and newly established coral colonies on recently formed islands. The barrier reef has numerous passages through which fast-wing tidal waters allow for exchange and movement of, among other things, planktonic eggs or larvae during spawning times (Thaman et al., 1997).

Thaman et al. conducted extensive community surveys in Ha'apai in 1997, resulting in a description of the marine environment and biodiversity of the island group (Thaman et al., 1997). They estimated that there were about 23 seabirds or migratory bird species in Ha'apai. Of these, 11 are probably resident, 4 are migratory, 7 are seen only occasionally, and one is a migratory breeder. The sea birds nest primarily on Ha'apai's uninhabited islands (Thaman et al., 1997).

Thaman et al. (1997) highlighted the following as being of cultural importance to the people of Ha'apai: marine flora, comprising over 20 species of seagrasses and seaweeds as well as mangroves; over 750 finfish species, including deepwater pelagic and demersal species (e.g. tunas, flyingfish, marlins and other billfish and deepwater snapper); and many reef, lagoon or inshore species as well as sharks, rays and eels. It was acknowledged that a range of small or cryptic species, many of which probably have no Tongan names, also inhabit the marine environment of Ha'apai. Other marine animals identified by the people of Ha'apai include four whale species (including sperm and humpback whales), five dolphin species, four turtle species, two sea snakes, over 110 species of shellfish, over 40 echinoderms (including sea urchins and sea cucumbers), more than 35 crustaceans (e.g. lobsters, prawns and crabs), mollusks (octopus, squid, sea slugs, sea hares), chitons, sea worms, seven types of anemone, over sixty culturally important hard and soft corals, as well as foraminifera, protozoa and zooplankton. These data, being a description of culturally important marine flora and fauna, are likely an underestimate of the biodiversity of Ha'apai. Lovell and Palaki (2000), for instance, reported 192 hard coral species from surveys conducted on just 11 reefs in the Tongatapu Island Group. A more recent survey that included Ha'apai coral reefs recorded 42 genera of hard corals (Bruckner, 2014).

Thaman et al.'s (1997) survey results indicate that a range of seaweeds, over 300 finfish species, over 40 shellfish, about 20 crab species, and a number of other marine invertebrates are important for food. Many of these plants and animals are also main sources of cash income to villages, with many marine products being sold locally, shipped for sale in Tongatapu, or exported overseas for commercial gain. Furthermore, a survey of Nomuka Island's coral reef in the context of establishing a Special Management Area reported a high density of herbivorous reef fishes (Malimali et al., 2010), an

important indicator of coral reef health (Mumby et al., 2006). A survey of Lifuka Island noted a healthy density of giant clams, including the rare and restricted *Tridacna tevoroa* (Friedman et al., 2009). Giant clams are ecologically, culturally and commercially important species in Tonga, and healthy populations are rare (Friedman et al., 2009). On Lofanga, the same team found the Tongan endemic *Siganus niger* (Friedman et al., 2009).

Several species of marine organisms have been introduced into Ha'apai. In 1982, the seaweed *Eucheuma sp.* was brought to Vava'u from Fiji and was later cultured on a trial basis in Ha'apai. In 1995, 587 commercial trochus shells were transplanted from Fiji to the 'Auhangamea Passage between Uoleva and 'Uiha. These, and other unintended introductions, may have displaced native species in the marine environment (Thaman et al., 1997).

Surveys of communities have assessed numerous taxa of marine plants and animals to be rare or threatened including some species of: mangroves, seabirds, seagrasses and seaweeds, sharks, rays, eels, reef and deepwater finfish, shellfish, crabs, lobsters, sea cucumber, corals, sea urchins and sea hares (Thaman et al., 1997).

Pelagic waters around Ha'apai are also considered highly productive, especially on the eastern side of the islands close to the Tonga Trench. The Trench itself has been described above at Site L 2: Tonga Trench and Tonga Ridge. Waters in that area, especially around seamounts, are targeted by longliners due to their known productivity attracting high densities of tunas (Passfield and Gilman, 2010). These waters overlap with EBSA 26 – Tongan Archipelago – which is noted, among other things, for its areas of high productivity (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 3)

This site includes both inshore (primarily coral reefs) and offshore marine habitats. Considering the information also provided at site L3, above, which is not specific to Ha'apai supporting documentation for this site includes five peerreviewed papers and 17 reports, and two datasets, with three of the reports, one dataset and one expert comment containing information specific to the Ha'apai island group.

Obligations (score = 3)

Species in the area which are covered by the IUCN Red List of Threatened Animals, the U.S. Endangered Species Act, and the Convention on International Trade in Endangered Species (CITES) include: humpback whale (*Megaptera novaeangliae*), green turtle (*Chelonia mydas*), hawksbill turtle (*Eretmochelys imbricata*), all stony coral species (*Order Scleractinia*), southern giant clam (*Tridacna derasa*), elongate giant clam (*Tridacna maxima*), the fluted giant clam (*Tridacna squamosa*) and the Tevoro clam (*Tridacna tevoroa*) (Friedman et al., 2009; Thaman et al., 1997).

Fisheries Management Act 2002 and Environment Management Act 2010 pertain to protection of habitat and/or species in Ha'apai as elsewhere. The Convention on Biological Diversity lists obligations to protect fisheries resources, threatened species and habitats such as coral reefs. The National Forest Policy (2008) has provision for the protection of mangroves and other wetland ecosystems.

In 1997, the Government of the Kingdom of Tonga designated the entire Ha'apai Group, the 64 central islands of Tonga, as a Conservation Area (CA) indicating a commitment to a higher level of conservation in Ha'apai than might be expected elsewhere. A management plan for this conservation area was prepared (Thaman et al., 1997) but information available to date does not indicate its status.

3.1.7 SITE L 7: Vava'u waters

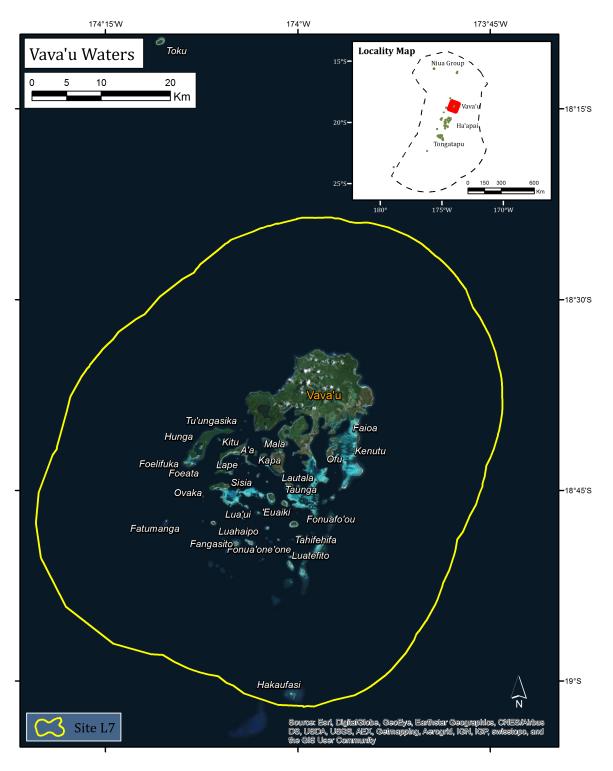


FIGURE 7. SITE L 7: Vava'u waters

Geographic Cluster	Site Name	Site Code	Overall Rating
Large-scale special, unique site	Vava'u waters	L7	10

Geographic boundaries

(-18.8909, -174.3968) and (-18.4901, -173.66178)

Geographic description (score = 1)

The Vava'u Group lies in the northern waters of the Kingdom of Tonga, at 18.6228° S, 173.9903° W. It consists of a main island and 40 smaller islands, as well as numerous rocky islets, sandbars, and reefs. The Vava'u waters as described in the expert workshop is assumed to extend to approximately 12nm from shore, and to include all waters shallower than 200m.

Justification (score = 3)

The Vava'u Island group is surrounded by diverse marine habitats, including inshore coral reefs, seagrass beds, mangroves, shallow soft-bottom communities, deep channels, oceanic waters and deep seafloor topography (including features covered in L1 and L4). The coral reefs of Vava'u have been surveyed by BIORAP and Living Oceans Foundation, and more recently the Climate Resilience Sector Project's (CRSP) Special Management Area (SMA) project (Atherton et al., 2015; Bruckner, 2014; Ceccarelli, 2016).

The Vava'u Island group is the one of the northernmost island groups in Tonga. The main island has long, narrow indentations and embayments along its southern coast, which give way to an extensive reef and island complex to the south (Holthus, 1996). This unique geomorphology gives rise to a high diversity of habitats (Webster, 2015). Reefs in the northern part of Vava'u, with its coves and bays, are more heavily influenced by terrestrial activities (Bruckner, 2014), whilst the barrier reefs of the south tend to be more species-rich (Kulbicki and Bozec, 2005). Reef structure is highly influential in determining the diversity, density and condition of coral reef organisms in Vava'u. The recent BIORAP found that moderately exposed reefs had the highest number of coral species, followed in descending order by exposed reefs, sheltered reefs, limestone drop-offs and volcanic reefs (Fenner, 2015). The lowest cover (1.9%) was recorded on northern volcanic reefs at Fonualei Island, and the highest on moderately exposed reefs in the southern part of the Vava'u island group (70.6%) (Webster, 2015).

The BIORAP recorded 206 species of hard corals (Fenner, 2015), and 249 species of macroinvertebrates from 101 families and 146 genera, dominated by molluscs (Bauman, 2015). The fish surveys reported 406 species from the reefs of Vava'u (Stone, 2015). Reef fish fauna was dominated by species from relatively low trophic groups, with high abundances of damselfishes (Pomacentridae) and wrasses (Labridae), and low numbers of piscivores and carnivores, including sharks (Bruckner, 2014; Stone, 2015). A focused survey on species targeted by fisheries found a dominance of surgeonfishes (Acanthuridae) and parrotfishes (Scaridae), with a lower representation of species from higher trophic levels (Imirizaldu, 2015).

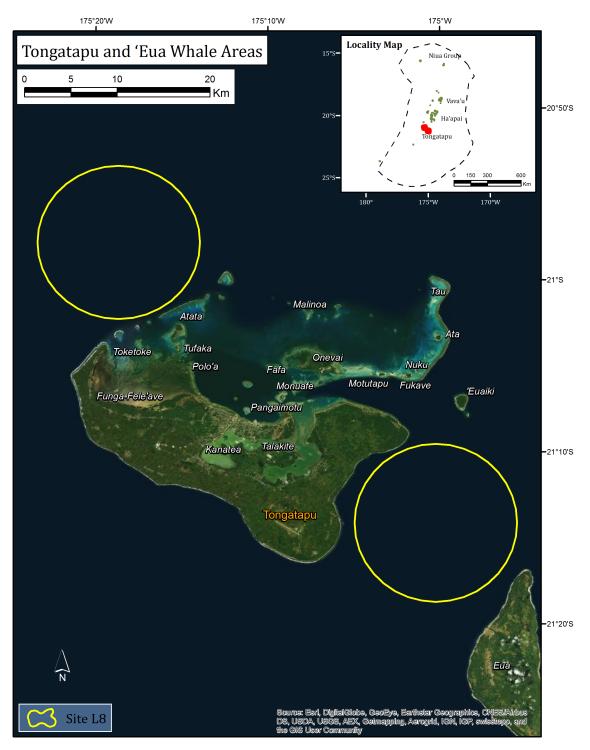
There are now 14 marine mammal species officially confirmed as occurring in Tonga, including two baleen whales, nine dolphins and one sperm whale – many of these occur in Vava'u. As for most archipelagos of Oceania, the spinner dolphin appears to be the most common species in the coastal waters of Vava'u. As a coastal species, they deserve particular attention, since their coastal habitat is likely to be impacted by anthropogenic pressures. Opportunistic sightings along the coast of Fonualei suggest that the common bottlenose dolphin is a regular user of coastal and inner waters. All other small cetacean species probably tend to frequent offshore waters (Atherton et al., 2015).

Tongan waters are home to one of Oceania's distinctive breeding populations of humpback whales (Garland et al., 2015); Vava'u is well-known as an important area for calving, and survey data exist for a number of years (Lindsay et al., 2016). Vava'u's entire marine environment, especially shallow water close to reefs, but beyond the reef edge, is important for calving humpback whales (Lindsay et al., 2016) and should be protected in this regard. Interestingly, in Vava'u there is a positive association between coral reefs and mother-calf pairs of humpback whales, probably for purposes of protection (Lindsay et al., 2016).

Mother–calf pairs seem to be most common in the shallow nearshore waters surrounding the islands of Luaui, Fangasito, Fonua'one'one, Lape, Mala and Ofu. The Lalolomei Bank south of Vava'u has been predicted as highly suitable habitat for adult humpback groups. For other groups of humpback whales, important areas include up to approximately 3km off the western and northern coasts of Hunga Island, up to 3km south of Foelifuka and Foeata islands, and the triangular region between the islands of Fonuafo'ou, Luatafito and Tahifehifa. However, considering that humpback whales are observed in most shallow waters of the Vava'u islands group, it is recommended that all waters less than 200m deep and north of the Lalolomei Bank be considered important for humpback whales. (Atherton et al., 2015)

The Oceania population of humpback whale is listed as an Endangered species under the IUCN Red List and their slow recovery in Tonga appears to be related to the fact that there is limited interchange between the population that frequents Tonga, French Polynesia and New Caledonia and other humpback populations in the South Pacific (Garrigue et al., 2015); there may even be limited exchange between groups within this central south Pacific population, making the Tongan humpback population unique (Garland et al., 2015).

Coral reefs in Vava'u are subject to numerous stressors, all of which are covered in Site L 3: Inshore marine areas. The reefs of Vava'u have had recent outbreaks of coral predators, including COTS, *Culcita and Drupella* (Bruckner, 2014). A recent assessment of coral communities in various Pacific Island countries found that Neiafu Harbour in Vava'u was one of Tonga's most disturbed areas (Chesher, 1995; UNEP-WCMC, 2015). Within the Vava'u group itself, the outer islands subject to oceanic influences are in better condition than those around the main island and even better than those close to inhabited areas, making these reefs more valuable (Imirizaldu, 2015). Land clearing and the construction of roads and causeways, such as on 'Uta Vava'u, has caused sedimentation and disrupted the natural water flows, resulting in reef and mangrove mortality (UNEP-WCMC, 2015). This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).


Type and number of sources (score =3)

There are at least three raw datasets for coral reefs, one for humpback whales, one for nesting turtles, six peer-reviewed papers and five reports available for marine habitats of Vava'u, especially the coral reefs and marine mammals. These is also ample (at least six sources) anecdotal evidence from residents and scientists who have conducted research in these areas. There is less material available for offshore waters, but some of this can be inferred from information about similar environments (see L1, 3 and 4).

Obligations (score = 3)

There are obligations to protect and sustainably manage fish and invertebrate species associated with coral reefs, seagrass beds, mangroves, pelagic ecosystems and seamounts within the Fisheries Management Act 2002 and subordinate regulations, including terms and conditions associated with licenses. There are obligations also for the protection of sharks under Tonga's National Plan of Action for Sharks 2014–2016 (Kimley pers. comm., see http://voices.nationalgeographic.com/2016/01/12/sharks-use-seamounts-as-compass-to-navigate-undersea/) (Tonga Fisheries Division & Pacific Islands Forum Fisheries Agency, 2013). The Whale Watching and Swimming Act 2009, Whale Watching Regulation 2013 pertains to the protection of humpback whales and other marine mammals targeted by the tourism industry. The Whale Watching Act offers a level of control over whale watching tourism, which could potentially pose a threat to mother and calf pairs (Kessler et al., 2013), and all of Tongan waters has been considered for a whale sanctuary although no final decision has been made. Corals, some clams, sea cucumbers, groupers, sharks, pelagic fishes, dolphins and whales are listed under the IUCN Red List and CITES. The Convention on Biological Diversity lists obligations to protect fisheries resources, threatened species and habitats such as coral reefs. The National Forest Policy (2008) has provision for the protection of mangroves and other wetland ecosystems.

Sites identified by the BIORAP were Fonua one one, Vaka Eitu, Eueiki, Fangasito Islands, and across the channel from Lotuma island for corals (Fenner, 2015), Maninita, Taula, 'Euakafa Island and 'Euaiki Islands for fish diversity (Stone, 2015); Toku, Fangasito, Maninita and 'Euakafa Islands for the restoration of target fish populations (Imirizaldu, 2015); whilst the central and southern islands were most speciose in terms of macroinvertebrates (Bauman, 2015) and Fonualei and Toku Islands were identified as potential spawning grounds (Stone, 2015). In terms of overall reef condition, Taula Island and surrounding reefs, Fangasito, Euakafa and Eueiki Islands were considered in best condition (Webster, 2015). Fangasito, Maninita and Taula are also part of the southern Vava'u islands identified as a special, unique site for turtle nesting, sharks and coral reefs in good condition (see Site V 1: Southern Vava'u islands and turtle nesting sites and Site V 4: Vava'u Southern Bank). Fonualei and Toku Islands were suggested as a further site for their high densities of higher trophic level fish (see Site V 2: Fonualei and Toku Islands).

3.1.8 SITE L 8: Tongatapu and 'Eua whale areas

FIGURE 8. SITE L 8: Tongatapu and 'Eua whale areas

TABLE 8. SITE L 8: Tongatapu and 'Eua whale areas	s. Overall score (based upon information below)
---	---

Geographic Cluster	Site Name	Site Code	Overall Rating
Large-scale special, unique site	Tongatapu and 'Eua whale areas	L8	6

Geographic boundaries

Tongatapu (-20.8967, -175.3957) and (-21.0311, -175.2270); Eua (-21.1530, -175.07560) and (-21.3182, -174.9319)

Geographic description (score = 1)

The general marine area around the two most southern islands of Tonga, 'Eua and Tongatapu, host the initial annual arrival of the humpback whales into Tongan waters. The geographic area seems loosely defined and includes a rectangular swathe of ocean around the islands.

Justification (score = 1)

A description of the humpback whale population in Tonga is given in Site L 4: Vava'u Waters. Humpback whales travel from Antarctica to Tonga every year between May and November (<u>http://www.deepbluediving.to/</u> Accessed 26/05/16). They come to mate, give birth and socialize; female humpback whales arrive heavily pregnant. After a month or two of their arrival, they give birth to a calf that they then nurse to build up their blubber to survive the journey back to Antarctica in November. Humpback whales arrive at the two most southern islands of 'Eua and Tongatapu before any other islands in Tonga. Many whales stay in these two southern islands while others travel further north (<u>http://www.deepbluediving.to/</u> Accessed 26/05/16). These whales support whale watching tourism in the area (pers. comm. R. Bing, L. Matoto). Whale habitat is specifically listed as a feature of EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 2)

Peer-reviewed information and data on humpback whale populations in Tonga was only available for Vava'u. The main source of information about humpback whales in waters around Tongatapu and 'Eua in particular was a website advertising whale watching, and expert advice from workshop participants.

Obligations (score = 2)

Tourism activities associated with whales are controlled by the Whale Watching and Swimming Regulations, 2013 (pers. comm. R. Bing, L. Matoto). There are further obligations for protecting whales under the Fisheries Management Act 2002, Environment Management Act, and Whale Watching and Swimming Act 2009. Humpback whales are on the IUCN Red List and protected under CITES.

3.1.9 SITE L 9: Canyons

Submarine canyons are defined as "steep-walled, sinuous valleys with V-shaped cross sections, axes sloping outward as continuously as river-cut land canyons and relief comparable to even the largest of land canyons" (Shephard, 1964). "Large" canyons were mapped in Tonga and are defined as extending over a depth range of at least 1,000 m and as being incised at least 100 m into the slope at some point along their thalweg (lowest part of the valley)(Harris & Whiteway, 2011). The aim of this study is to assess the global occurrence of large submarine canyons to provide context and guidance for discussions regarding canyon occurrence, distribution, geological and oceanographic significance and conservation. Based on an analysis of the ETOPO1 data set, this study has compiled the first inventory of 5849 separate large submarine canyons in the world ocean. Active continental margins contain 15% more canyons (2586, equal to 44.2% of all canyons.

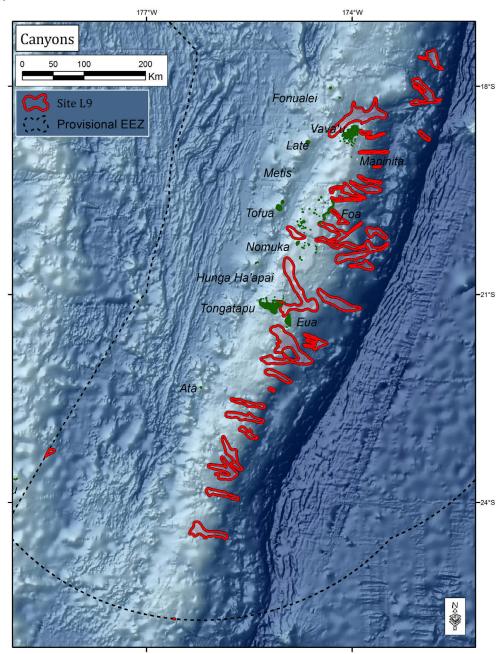


FIGURE 9. SITE L 9: Canyons

TABLE 9. SITE L 9: Canyons (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Large-scale special, unique site	Canyons	L8	8.5

Geographic boundaries

(-24.1052, -178.9924) and (-18.2143, -171.6797)

Geographic description (score = 2)

Geographic location: Tonga has 37 deepwater canyons, some of which are interlinked. They run east of the island chain or interspersed it in a south, south-westerly direction from 17.5°S, 172.8°W to 24.5°S and 176°W. Their geographic boundaries are defined as per Harris et al. (2014). See also Figure 9.

Justification (score = 2.5)

Submarine canyons are features along continental and oceanic island margins that connect continental shelves to deep ocean basins (De Leo et al., 2010). Submarine canyons are diverse and complex in terms of their origins, hydrography, geologic settings, sediment transport and accumulation and biodiversity (Harris et al 2014). Unusual physical oceanographic conditions inside canyons, such as accelerated currents and dense-water cascades, can be caused by topographic and climate forcing, increasing suspended particulate matter concentrations and transport of organic matter from coastal zones to the deep ocean. These phenomena can be responsible for enhancing both pelagic and benthic productivity inside canyon habitats as well as biodiversity of many benthic faunal groups (De Leo et al., 2010). The combination of steep rocky slopes, strong currents and enhanced access to food makes submarine canyons places of special ecological significance (Harris et al., 2014).

Canyons often have strong currents and a lot of water movement up and down the depth range, moving sediments, nutrients and small organisms. This creates ideal conditions for feeding and spawning, so canyons have high biomass and biodiversity (De Leo et al., 2010). For example, the La Jolla Canyon off southern California has been shown to have as much as 50 times the biomass than surrounding areas of shelf and slope (Vetter and Dayton, 1998). Megafaunal species richness and diversity generally also tend to be higher within canyons, especially for the highly mobile taxa (Vetter et al., 2010). These include whales, dolphins, seabirds and top-level marine predators such as sharks and tuna. They are also corridors of connectivity between deep and shallow habitats – so entire canyons and their adjacent shallow waters are interconnected (Environment Australia 2003).

Incising the continental shelf, they are typically characterized by high spatial heterogeneity and complex hydrographic patterns, and can act as conduits for larvae and organic matter from the shelf to the deep sea (Tyler et al., 2009; Vetter and Dayton, 1998). Thirty-six submersible dives delivered video and photographic evidence of higher abundances of highly mobile fishes and invertebrates compared with nearby slopes at the same depth, supporting the concept that canyons may be important sources of larvae for surrounding habitats (Vetter et al., 2010).

Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input) to sustain deepwater azooxanthellate coral communities (Huvenne et al., 2011). In this way, deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere (Huvenne et al., 2011). This site coincides with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 2)

No studies specific to Tonga's canyons were found, but the generic results of research into deepwater canyons certainly apply to Tonga's canyons and are used here: eight peer-reviewed papers provided the source of this information.

Obligations (score = 2)

Some of the animals generally found associate with canyons e.g. whales, sharks, seabirds will likely include species that are IUCN Red Listed or CITES listed.

3.2 FINER SCALE BIOPHYSICALLY SPECIAL, UNIQUE MARINE SITES

3.2.1 Niuatoputapu Island Group

3.2.1.1 SITE N 1: SOUTHEAST NIUATOPUTAPU

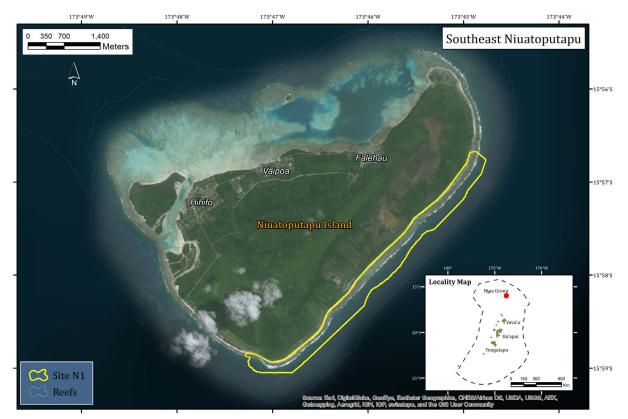


FIGURE 10. SITE N 1: Southeast Niuatoputapu

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites - Niuatoputapu Island Group	Southeast Niuatoputapu	N1	8

Geographic boundaries

(-15.9815, -173.7887) and (-15.9498, -173.7426)

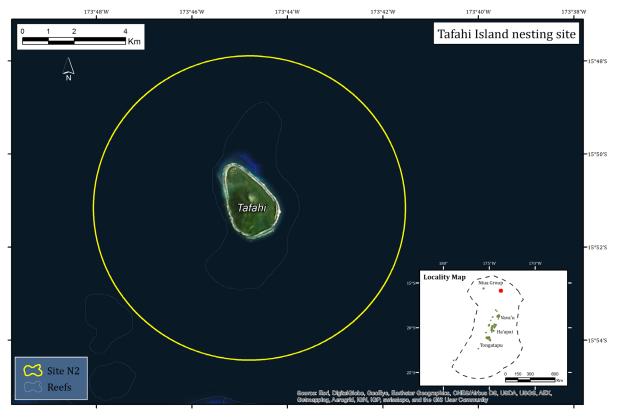
Geographic description (score =3)

Niuatoputapu is a high island in the far north of the country (15.9567°S, 173.7783°W), almost entirely surrounded by fringing coral reef. The southeastern side appears to be more exposed to the prevailing swell than the northern side, and has a narrow reef flat, reef crest and slope. The defined area incorporates the shallow reef flat and intertidal area around Niuatoputapu, from approximately the Mata'aho Airport at the southern end to the northeastern curve of the island.

Justification (score =2)

On the southeastern side of Niuatoputapu, near the airport, at Tahililku, there are high abundances of marine gastropods (for example, sea snails – 'Elili', family Turbinidae) and coastal coconut crabs ('u'u')), which are biologically significant (Ministry of Lands, Environment, Climate Change and Natural Resources, 2014).

Turban snails (Elili) are commonly harvested gastropods vulnerable to overexploitation. They tend to be herbivorous grazers, and therefore assist in keeping algal biomass low, which favours coral recruitment and therefore healthy coral communities (Cooling and Smith, 2015). Areas where they are still found in high densities can indicate that the reef is generally not overexploited, and can serve as sources of larvae for other, more depleted reef areas.


Coconut crabs are highly prized throughout the Pacific, including Tonga. They are the largest terrestrial arthropod in the world and can weigh up to 4kg, with a marine larval phase, acting as scavengers on beaches and intertidal areas (Drew et al., 2010). Pacific and Indian Ocean populations are genetically distinct (Lavery et al., 1996). Recruitment is likely to be limited, making relatively intact populations difficult to find (Drew et al., 2010). The coconut crab's well-developed lungs and independence from the marine environment as an adult make it unique among crustaceans. They are vulnerable to overexploitation, and because of their popularity as a food source, they have disappeared almost entirely from some areas (Lavery et al., 1996). Sites with high aboundances of coconut crabs therefore indicate a relatively intact environment.

Type and number of sources (score =1)

Sources include three peer-reviewed papers about turban snails and coconut crabs, the key features of this site; none of these were specific to Tonga. Expert advice from the workshop confirmed the presence of these species at the site.

Obligations (score = 2)

The Fisheries Management Act 2002 and Environment Management Act both state obligations for harvesting or protecting coconut crabs and other shallow water organisms. The Convention on Biological Diversity lists obligations to protect fisheries resources. Coconut crabs are listed as 'Data Deficient' on the IUCN Red List.

3.2.1.2 SITE N 2: TAFAHI ISLAND NESTING SITE

FIGURE 11. SITE N 2: Tafahi Island nesting site

TABLE 11. SITE N 2: Tafahi Island nesting site. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites - Niuatoputapu Island Group	Tafahi Island nesting site	N2	8.5

(-15.7971), -173.79998) and (-15.9082, -173.6933)

Geographic description (score =2)

Tafahi Island (15.85° S, 173.71° W) lies north of the Vava'u Island group, covers 3.4 km² and its peak reaches an altitude of 506m (<u>http://islands.unep.ch/IKY.htm</u>). The site includes seabird and turtle nesting areas, which are concentrated along the shoreline and the band of vegetation directly landward of the beach, as well as surrounding seabird and turtle foraging areas out to at least 5km from the coast (Dobbs et al., 2007). Seabird foraging ranges can vary from 10s to 100s of kilometers.

Justification (score = 2.5)

North of Niuatoputapu Island, Tafahi Island is a nesting site for both turtles and seabirds (pers. comm. K Fakaosi).

The main species of sea turtle nesting on Tongan beaches are the green turtle and the hawksbill turtle (<u>https://www.</u> <u>livingoceansfoundation.org/sea-turtles-of-tongs/</u>). Effective conservation of sea turtles includes identifying and protecting their nesting beaches, such as the beaches of Tafahi Island, and the surrounding foraging area. All turtle species are in need of conservation efforts, making all intact nesting and feeding habitats highly valuable. Their diets include seaweed and seagrasses (green turtle) and invertebrates (hawksbill). Their foraging enhances the productivity and health of seagrass beds, aids nutrient cycling, and regulates sponge densities on coral reefs (Wilson et al., 2006). The nesting activities of both turtles and seabirds introduce nutrients into otherwise nutrient-poor and oligotrophic systems, and are an integral component of dune ecosystems (Wilson et al., 2006). Seabirds are top predators in parts of the ocean where they forage, and their feeding and breeding activities create a unique connectivity between terrestrial and marine habitats (Birdlife International, 2009).

Human impacts affect sea turtle populations at each stage of their life cycle, from the destruction and invasion of their nesting beaches, to the introduction of plastic debris into the ocean, which can be ingested, to the killing of sea turtles with fishing gear and boat strikes. All seven species of sea turtles around the world are threatened by human activities (see obligations section below).

Most seabirds are adapted for extensive migrations, feeding on or just below the ocean's surface, and nesting in colonies on beaches and in other coastal habitats. Seabirds that nest on Pacific Islands often lay their eggs in rudimentary nests on shrub-like vegetation, in crevices or holes dug in the sand, or directly on the ground. Seabird counts in Vava'u have recorded 21 species of seabird (<u>http://vepanews.blogspot.com.au/2013/01/nesting-colonies-of-vavaus-outer-islands.</u> <u>html</u>), and Birdlife International lists 22 seabird species for the country (<u>http://datazone.birdlife.org/country/tonga</u>), but a detailed search suggests there are 43 species whose range extends into Tongan waters. Recently, a survey of Maninita Island stressed the importance of undeveloped islands for the protection of breeding seabird populations, stating that Tonga has lost 78% of its landbird species; only 13 species of seabirds still maintain viable breeding colonies on Tongan Islands (Bull et al., 2002). The black and brown noddies, brown booby and black-naped tern are the most commonly recorded species (Steadman and Freifeld, 1999).

TABLE 12. SEABIR	O SPECIES RECO	RDED IN TONGA
------------------	----------------	---------------

Common name	Species	Occurrence in Tonga / IUCN Red List Status (IUCN, 2016)	Notes
Light-mantled albatross	Phoebetria palpebrata	Rare, Accidental/ Near-threatened	Found in Tafahi
Wandering albatross	Diomedea exulans	Extant / Vulnerable	Found in Tafahi
Southern giant-petrel	Macronectes giganteus	Rare, Accidental / Least Concern	
Cape petrel	Daption capense	Extant / Least Concern	
Gray-faced petrel	Pterodroma gouldi	Rare, Accidental / Least Concern	
Kermadec petrel	Pterodroma neglecta	Extant / Least Concern	
Herald petrel	Pterodroma heraldica	Extant / Least Concern	Breeding population in Tonga, including Tafahi
Mottled petrel	Pterodroma inexpectata	Extant / Near Threatened	
White-necked petrel	Pterodroma cervicalis	Extant / Vulnerable	Found in Tafahi
Black-winged petrel	Pterodroma nigripennis	Extant / Least Concern	
Gould's petrel	Pterodroma leucoptera	Rare, Accidental / Vulnerable	
Collared petrel	Pterodroma brevipes	Rare, Accidental / Vulnerable	
Phoenix petrel	Pterodroma alba	Rare, Accidental / Endangered	Listed as previously resident, but now extinct, in Tonga
Tahiti petrel	Pseudobulweria rostrata	Extant / Near Threatened	Found in Tafahi
Black petrel	Procellaria parkinsoni	Rare, Accidental / Vulnerable	Found in Tafahi
Wedge-tailed shearwater	Ardenna pacifica	Extant / Least Concern	Occurs in the 'Ata Island Important Bird Area
Buller's shearwater	Ardenna bulleri	Rare, Accidental / Vulnerable	
Flesh-footed shearwater	Ardenna carneipes	Extant / Near Threatened	Migrates through Tonga
Sooty shearwater	Ardenna grisea	Extant / Near Threatened	
Short-tailed shearwater	Ardenna tenuirostris	Extant / Least Concern	
Tropical shearwater	Puffinus bailloni	Extant / Least Concern	Resident in Tonga
Black-bellied storm-petrel	Fregetta tropica	Rare, Accidental / Least Concern	
Polynesian storm-petrel	Nesofregetta fuliginosa	Extant / Endangered	
White-tailed tropicbird*	Phaethon lepturus	Extant / Least Concern	Found in Tafahi
Red-tailed tropicbird*	Phaethon rubricauda	Extant / Least Concern	
Lesser frigatebird*	Fregata ariel	Extant / Least Concern	Resident in Tonga, including Tafahi
Great frigatebird*	Fregata minor	Extant / Least Concern	Found in Tafahi
Masked booby*	Sula dactylatra	Extant / Least Concern	Resident in Tonga, including Tafahi
Brown booby*	Sula leucogaster	Extant / Least Concern	Breeding population in Tonga, occurs in Tafahi and the 'Ata Island Important Bird Area
Red-footed booby*	Sula sula	Extant / Least Concern	Occurs in the 'Ata Island Important Bird Area and in Tafahi
Pacific reef-heron	Egretta sacra	Extant / Least Concern	
Brown skua	Catharacta antarctica	Rare, Accidental / Least Concern	
Parasitic jaeger	Stercorarius parasiticus	Rare, Accidental / Least Concern	Found in Tafahi
Brown noddy*	Anous stolidus	Extant / Least Concern	Breeding population in Tonga, including Tafahi
Black noddy*	Anous minutus	Extant / Least Concern	Resident in Tonga, occurs in the Maninita, Taula, Lualoli and Vava'u Marine IBAs, and Tafahi
Lesser noddy	Anous tenuirostris	Extant / Least Concern	Breeding population in Tonga, including Tafahi
Gray noddy*	Procelsterna albivitta	Extant / Least Concern	Resident in Tonga
Blue-gray noddy*	Procelsterna cerulea	Presence Uncertain / Least Concern	
White tern*	Gygis alba	Extant / Least Concern	Resident in Tonga, including Tafahi
Sooty tern	Onychoprion fuscatus	Extant / Least Concern	Breeding population in Tonga, occurs in the Fonualei IBA and on Tafahi
Gray-backed tern	Onychoprion lunatus	Extant / Least Concern	
Black-naped tern	Sterna sumatrana	Extant / Least Concern	Resident in Tonga
Great crested tern	Thalasseus bergii	Extant / Least Concern	Breeding population in Tonga

The exact list of species that nest on Tafahi Island is unknown. Gibbons (2015) observed "boobies, tropicbirds, frigatebirds, white terns, and noddies" nesting on Tafahi Island, but did not list the exact species. They are likely to include a subset of the species identified with an "*" in the table above.

Type and number of sources (score =2)

Sources include two peer-reviewed papers on turtle and seabird foraging ranges, one report on the role and vulnerability of turtles; and two peer-reviewed papers and three websites relating specifically to Tonga. Information about the site itself was provided by expert advice during the workshop.

Obligations (score = 3)

The Fisheries Management Act 2002 contains regulations about the harvest of turtle and seabird eggs. Turtles and seabirds are further protected under the Environment Management Act and the Bird & Preservation Act Cap 125. Tonga is a signatory of the Memorandum of Understanding on the Conservation and Management of Marine Turtles and their Habitats of the Indian Ocean and South-East Asia. Species occurring in Tongan waters include the green (*Chelonia mydas*) – Endangered, loggerhead (*Caretta caretta*) – Vulnerable, hawksbill, (*Eretmochelys imbricata*) – Critically Endangered and leatherback (*Dermochelys coriacea*) – Vulnerable. Turtles are also protected under CITES. Seabirds are also covered by IUCN and CITES (see table 12 above). The Convention on Biological Diversity lists obligations to protect threatened species and their habitats.

3.2.1.3 SITE N 3: NORTHERN NIUATOPUTAPU KALOAMA

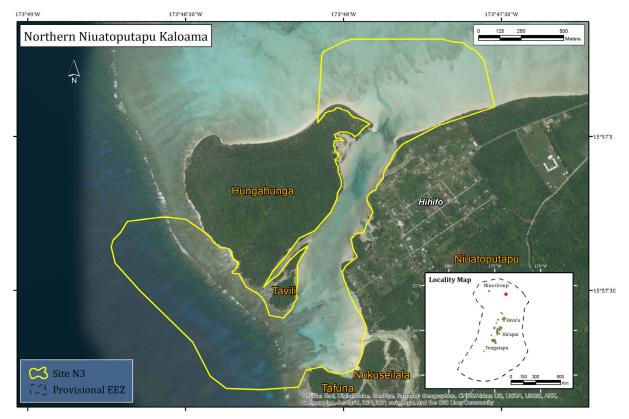


FIGURE 12. SITE N 3: Northern Niuatoputapu Kaloama

TABLE 13. SITE N 3: Northern Niuatoputapu Kaloama. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Niuatoputapu Island Group	Northern Niuatoputapu Kaloama	N3	6

(-15.9561, -173.8131) and (-15.9519, -173.7872)

Geographic description (score =3)

The site is the shallow reef on the northern side of Niuatoputapu Island, following the reef edge contour.

Justification (score = 1)

Kaloama (goatfish) are a commercially valuable and ecologically important family of coral reef fishes, usually found around areas of soft sediment between reef patches. Aggregation sites for feeding and spawning are recognised as being important for conservation, as protecting breeding grounds can ensure the persistence of the population.

The North side of Niuatoputapu is well knows as a Kaloama (goatfish) breeding ground (Ministry of Lands, Environment, Climate Change and Natural Resources, 2014). Goatfish are important for artisanal fisheries in many countries (Kolasinski et al., 2009; Uiblein, 2007). They are usually benthic carnivores, with barbels that are both sensory and muscular to seek and extract invertebrates from soft substrata; they are likely to influence the distribution and abundance of soft-sediment invertebrate assemblages (Kolasinski et al., 2009). Their highly active foraging behaviour stirs up sediment and promotes sediment resuspension, as well as the formation of mixed- species foraging associations; these traits may contribute significantly to food webs in sand-associated coastal ecosystems (Uiblein, 2007). Additionally, goatfish numbers respond rapidly to coral loss, potentially providing a warning sign of reef degradation (Russ et al., 2015).

Goatfish also feature as prey items of species of conservation significance; goatfish (larvae and small individuals) feature prominently in the diets of a number of foraging seabirds, for example (Monticelli et al., 2008; Surman and Wooller, 2003). The abundance of goatfish responds readily to exploitation and protection, suggesting that they may serve as useful indicators for ecosystem condition (Uiblein, 2007).

Reef fish breed by spawning, or releasing gametes into the water for external fertilization; most species form aggregations to maximize the likelihood of success. Spawning aggregations of reef fishes occur periodically, with individuals often travelling long distances to a particular site to spawn in high densities. This critical event occurs in conjunction with certain phases of the moon or tidal cycles, to further maximize the likelihood of fertilization (Domeier and Colin, 1997). Spawning aggregations are especially vulnerable to fishing, as the high density is an artificial and temporary phenomenon that aggregates individuals from a wide area, and targeting them rapidly depletes fish populations from a broad catchment (Abesamis et al., 2014). Thus, the known breeding grounds such as the northern Niuatoputapu area are of special importance.

Type and number of sources (score =1)

Sources include seven peer-reviewed papers on goatfish in general and spawning aggregations in general. There is mention of the site in one technical report, and expert advice from the workshop.

Obligations (score = 1)

The catch of coral reef fishes is regulated through the Fisheries Management Act 2002, and to some degree through the Environment Management Act. The Convention on Biological Diversity lists obligations to protect fisheries resources.

3.2.1.4 SITE N 4: TAFAHI ISLAND COCONUT CRAB

FIGURE 13. SITE N 4: Tafahi Island coconut crab

TABLE 14. SITE N 4: Tafahi Island coconut crab. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites - Niuatoputapu Island Group	Tafahi Island coconut crab	N4	6

Geographic boundaries

(-15.8357, -173.7519) and (-15.8676, -173.7448)

Geographic description (score =2)

This site covers the coconut crab habitat on Tafahi Island, which includes terrestrial habitats and the adjacent nearshore marine environment that supports the pelagic larval stage of the species.

Justification (score = 1)

Tafahi Island is north of Niauatoputapu and is home to a significant population of coconut crabs ('u'u') (Ministry of Lands, Environment, Climate Change and Natural Resources, 2014). Coconut crabs are a prized food source and are vulnerable to overexploitation, with few intact populations remaining. Their special and unique features are reviewed at Site N 1: Southeast Niuatoputapu. Identifying and protecting significant populations can provide an opportunity to establish baseline densities and set benchmarks for protection and management.

Type and number of sources (score = 2)

Sources include two peer-reviewed papers about coconut crabs; these were not specific to Tonga. One report highlighted the importance of coconut crabs to Tongan artisanal fisheries. Expert advice from the workshop confirmed the presence of these species at the site.

Obligations (score = 1)

The harvest of coconut crabs is regulated by the Fisheries Management Act 2002. The crabs are also protected under the Environment Management Act. Coconut crabs are listed as Data Deficient on the IUCN Red List. The Convention on Biological Diversity lists obligations to protect fisheries resources.

3.2.2 Vava'u Island Group

3.2.2.1 SITE V 1: SOUTHERN VAVA'U ISLANDS AND TURTLE NESTING SITES

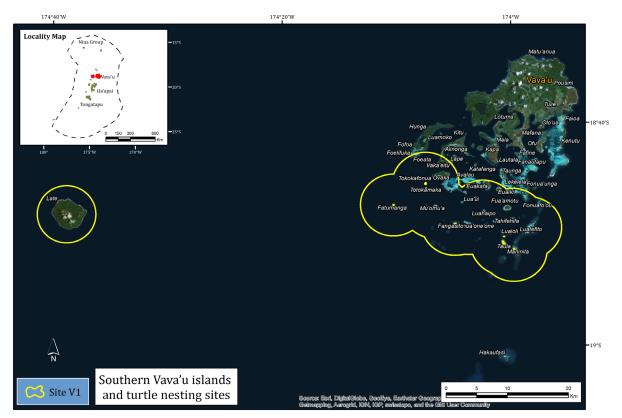


FIGURE 14. SITE V 1: Southern Vava'u islands and turtle nesting sites

TABLE 15. SITE V 1: Southern Vava'u islands and turtle nesting sites. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Vava'u Island Group	Va'vau turtle nesting sites	V1	11

Geographic boundaries

Vava'u uninhabited islands (-18.6857, -174.1822) and (-18.9219, -173.9606); Late (-18.7642, -174.6931) and (-18.8446, -174.6028)

Geographic description (score = 2)

This site includes the group of uninhabitated islands and surrounding waters in the southern half of the Vava'u Island group, south of a line running between Foelifuka and Fonuafo'ou. The site covers, for example, Fatumanga, Tokokafonua, Totokamaka, Fangasito, Luahipo, Tahifehifa, Luatefito, Lualoli, Taula, Fonua'one'one and Maninita Islands and surrounding waters of each island out to 5km offshore (Dobbs et al., 2007). Also part of this site is the Blue Lagoon of Foeata Island.

Justification (score = 3)

These southernmost islands of the Vava'u archipelago have relatively high diversity of corals, reef fishes and sharks; they also contain turtle nesting sites, high marine mammal populations (seasonally), seabird nesting and potential fish spawning grounds (pers. comm. K. Stone, Atherton et al., 2015; Vava'u Turtle Monitoring Program, 2013).

Coral reef communities in Vava'u have been discussed for Site L 3: Inshore marine areas and Site L 4: Vava'u Waters; including the special value of these reefs further away from human influence.

High densities of sharks are considered a sign of a healthy marine ecosystem. Top predators are typically the first to disappear from marine ecosystems under any degree of fishing pressure, as they are preferentially targeted by most fisheries and/or killed by fishermen when caught as by-catch (Friedlander and DeMartini, 2002; Graham et al., 2010; Hisano et al., 2011; Sandin et al., 2008). Their high commercial value combined with their K-selected life-history (slow growth, late maturity, low fecundity) reduces productivity of apex predators and inhibits recovery of exploited populations under continued fishing pressure (Collette et al., 2011; Pauly et al., 1998; Stevens et al., 2000). In some habitats, anthropogenic impacts have reduced the abundance of apex predators by 90 % or more (Myers and Worm, 2003). The removal of apex predators may result in trophic cascades, with changes occurring throughout the food web, sometimes down to primary producers (Estes et al., 2011). Recent surveys of Vava'u's reefs reported low densities of sharks; only the relatively remote islands, including this site (e.g. Maninita), supported sharks (Bruckner, 2014; Ceccarelli, 2016; Stone, 2015).

Whales and seabirds have been discussed for Site L 4: Vava'u Waters and for Site N 2: Tafahi Island nesting site; the premise that undeveloped islands are especially valuable for nesting seabirds was also referenced (Steadman and Freifeld, 1999).

The archipelago of the Kingdom of Tonga is home to the endangered green sea turtles, *Chelonia mydas* and critically endangered hawksbill sea turtles, *Eretmochelys imbricata*. Populations of both species reside here throughout the year, and migrate from other Pacific Islands to nest on these beaches (Havea and MacKay, 2009). The importance of these turtle species is discussed above for Site N 2: Tafahi Island nesting site and also applies to this site.

Turtle nesting has historically occurred on many islands throughout the Vava'u island group (Atherton et al., 2015). However, due to human impacts, there is now only limited turtle nesting in Vava'u and the nests that do occur are subject to poaching. Beaches on the more remote islands of Vava'u that serve as nesting grounds for green and hawksbill turtles are becoming more important as beaches closer to population centres pose greater risks such as egg harvesting, habitat loss and pests (Atherton et al., 2015).

All the uninhabited islands of Vava'u remain important turtle nesting sites, and the marine areas 5km around those islands are important aggregation and foraging areas during nesting season, which is from October to February, with peak nesting occurring in December. Additional important turtle foraging grounds include Blue Lagoon of Foeata Island, Hunga Lagoon of Hunga Island and the waters surrounding Mala Island (<u>http://www.seaturtle.org/mtn/archives/mtn123/mtn123p15.shtml</u>, accessed 26/5/16; pers. comm. T. Halafihi, K. Stone; Dobbs et al 2007, Atherton et al 2015, Vava'u Turtle Monitoring Program 2013). This site coincides with EBSA 26 – Tongan Archipelago, which specifically refers to the presence of green turtles (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 3)

Sources include one peer-reviewed paper, five reports (see also sources for Site N 2: Tafahi Island nesting site) and expert advice based on direct experience of the sites. Information on sharks was supplemented with eight general peer-reviewed papers, and the EBSA report refers to turtles in Tonga. Some of the information is based directly on a turtle monitoring programme taking place in Vava'u (http://tongaturtles.weebly.com/index.html accessed 23.02.2017).

Obligations (score = 3)

Both the Fisheries and Environment Management Acts refer to obligations to protect marine turtles and their nesting and foraging habitats. Both turtle species, a number of coral and reef fish species and reef sharks are listed on the IUCN Red List and are protected under CITES. There are obligations for the protection of sharks under Tonga's National Plan of Action for Sharks 2014–2016. The Convention on Biological Diversity lists obligations to protect threatened species and their habitats.

3.2.2.2 SITE V 2: FONUALEI AND TOKU ISLANDS

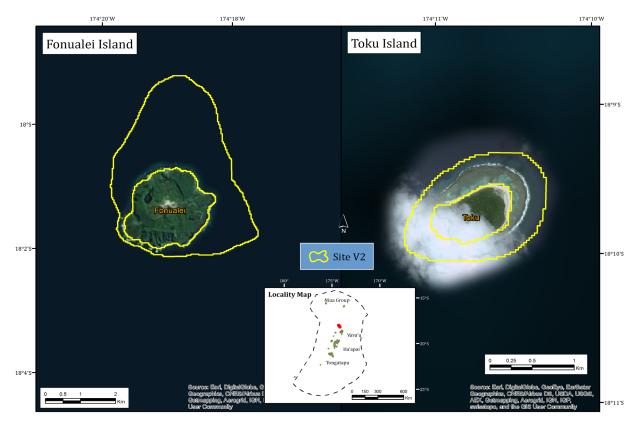


FIGURE 15. SITE V 2: Fonualei and Toku Islands

TABLE 16. SITE V 2: Fonualei and Toku Islands. Overall score	re (based upon information below)
--	-----------------------------------

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Vava'u Island Group	Fonualei and Toku Islands	V2	12

Geographic boundaries

(-17.9835, -174.3126) and (-18.1879, -174.2011)

Geographic description (score =3)

This site encompasses the land and shallow reef areas around Fonualei and Toku Islands.

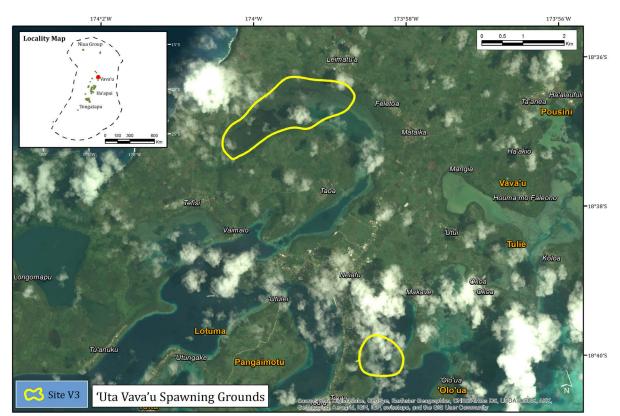
Justification (score = 3)

Northwest of the main islands in the Vava'u Archipelago are Fonualei and Toku Islands (37 and 27 nautical miles distant, respectively) noted for their relatively intact populations of large, higher trophic level reef fishes. The reefs of these two islands are unusual; Fonualei's reef has developed on volcanic rock, and Toku has oceanic pinnacle characteristics (BioRAP). Fonualei Island is important for snapper and sharks, the relocated Tongan megapode (*Megapodius pritchardii, a bird endemic to Tonga*), seabird nesting and, probably, a grouper spawning ground (Birdlife International, 2004; Imirizaldu, 2015). Toku Island has, relative to other places in Vava'u, a higher diversity of fish species, especially commercially targeted species (Stone, 2015). Green and hawksbill turtles and bottlenose dolphins have been observed in the waters around the two islands (Atherton et al., 2015).

The importance of breeding and spawning grounds for reef fishes is explained above for Site N 3: Northern Niuatoputapu Kaloama, as is their vulnerability to fishing pressure. Thus, the relatively intact spawning aggregations on the reefs around Fonualei and Toku Islands are of special importance.

Marine surveys of Toku and Fonualei are rare, due to their isolation and high degree of exposure. The recent BIORAP

identified Fonualei as having low marine macroinvertebrate species richness, but Toku had very high species richness, most probably due to the nature of the surveyed habitats (Bauman, 2015). Both reefs had high abundances of sea cucumbers, probably due to their distance from the larger population centres. The distance from the main island was also thought to be the main driver of the high density of snappers (Lutjanidae) and groupers (Serranidae) (Imirizaldu, 2015). Sites relatively unimpacted by fisheries efforts, such as the marine environment around Fonualei and Toku Islands, are special, including in Tonga.


Megapodes were successfully introduced to Fonualei in the 1990s, and surveys in 2003 showed a doubling of the population (Birdlife International, 2004; Geocare & Petroleum Consult Ltd, 2010). A number of nesting seabird species were recorded in 2013, including the brown booby, red-footed booby, great and lesser frigatebirds, sooty terns, white terns, red-tailed tropicbirds, brown and black noddies, golden plovers and some land-based birds (Geocare & Petroleum Consult Ltd, 2010). More than 100 000 sooty terns (*Sterna fuscata*) are estimated to breed in the volcanic crater on *Fonualei* (Pagad, 2013). The survey also noted a lack of invasive rats. Such large numbers of seabirds would use the surrounding marine environment for foraging. This site coincides with EBSA 26 – Tongan Archipelago, which specifically refers to the importance of seabird nesting habitats (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 3)

This site was subject to direct surveys by the SPREP BIORAP team, resulting in a peer-reviewed report, and at least three online and unpublished sources exist for the megapode. Peer-reviewed information on the importance of some of the species present at the site, coming from studies in other areas, is also available (see relevant sections above). The EBSA report provides a further Tonga-wide reference for the importance of these islands to nesting seabirds.

Obligations (score = 3)

Both the Fisheries and Environment Management Acts refer to obligations to protect these natural attributes, especially pertaining to the catch of snappers and groupers, and the protection of spawning aggregations. Sharks are protected under the Shark Protection Act, and the Tongan Bird and Preservation Act, Cap 125, protects the megapode from overexploitation. Many species present at this site are listed on the IUCN Red List and protected under CITES. Fonualei Island is proposed by MEIDECC as a conservation area.

3.2.2.3 SITE V 3: 'UTA VAVA'U SPAWNING GROUNDS

FIGURE 16. SITE V 3: 'Uta Vava'u spawning grounds

TABLE 17. SITE V 3: 'Uta Vava'u spawning grounds. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites - Vava'u Island Group	'Uta Vava'u spawning grounds	V3	8.5

Geographic boundaries

Site 1: near Leimatua village: (-18.6120, -174.0102) and (-18.6114, -173.9768); Site 2 – near Makave village (-18.6618, -173.9762) and (-18.6720, -173.9679)

Geographic description (score = 2)

This site encompasses two areas within the waters adjacent to the main island of Vava'u ('Uta Vava'u): the mangrove forest within the large lagoon near Laimatua Village, and the channel entrance to the old Vava'u Harbour.

Justification (score = 2)

Spawning and nursery areas for species of conservation significance (e.g. groupers) are often shallow inshore habitats at risk from habitat destruction and pollution. They include mangroves, seagrass beds and topographically and hydrodynamically complex areas such as channel entrances (Abesamis et al., 2014). 'Uta Vava'u, the largest island in the Vava'u Island group, is known to have at least two such areas.

There is an important mangrove nursery area within the large lagoon on Vava'u Island, near Laimatua Village. Mangroves are nursery grounds for a large number of crustacean and fish species that spend other parts of their life cycle elsewhere, such as coral reefs (Sheaves et al., 2016). A large number of species that spend their juvenile stages in mangrove areas are of conservation or commercial significance, and provide a crucial trophic link between terrestrial and marine habitats (Guannei et al., 2016). Depending on the composition, extent and health of a particular mangrove forest, they can be of variable quality as nursery habitats (Sheaves et al., 2016). The mangrove area near Laimatua Village has been recognized by the local community as a nursery area worth preserving (per. Comm. K. Stone).

The channel entrance to the old Vava'u Harbour, which lies at the opposite end of harbour from Makave Village, is a grouper spawning habitat. Many species of coral reef fishes form aggregations to spawn, to maximize the chances of fertilization (Domeier and Colin, 1997). This makes them vulnerable to overexploitation, because spawning aggregations guarantee high and easy catch rates (see also Site N 3: Northern Niuatoputapu Kaloama). Groupers are especially sensitive to overexploitation at spawning grounds (Abesamis et al., 2014). This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 1.5)

This information comes from communities and expert advice (pers. comm. K. Stone). General information about nursery habitats and spawning aggregations was found in four peer-reviewed papers.

Obligations (score = 3)

The protection of mangrove nursery habitats, fish species of commercial and conservation value, and fish spawning aggregation sites is prescribed under the Environment Management Act 2002 and Fisheries Management Act, 2002. Some grouper species are also listed on the IUCN Red List as Near Threatened, Threatened or Vulnerable. The National Forest Policy (2008) has provision for the protection of mangroves and other wetland ecosystems.

3.2.2.4 SITE V 4: VAVA'U SOUTHERN BANK

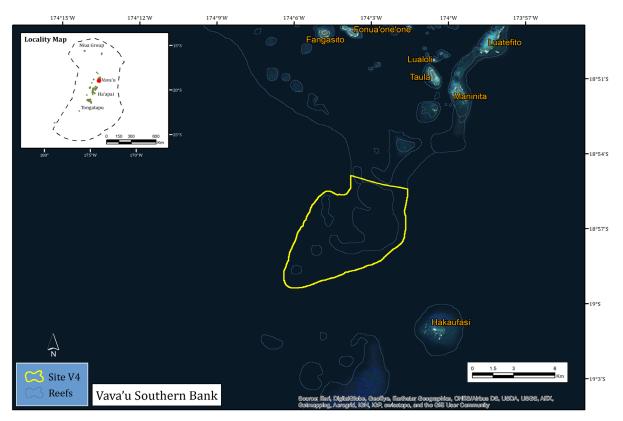


FIGURE 17. SITE V 4: Vava'u southern bank

TABLE 18. SITE V 4: Vava'u southern bank. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites - Vava'u Island Group	Vava'u southern bank	V4	10.5

Geographic boundaries

(-18.9877, -174.1091) and (-18.9249, -174.0210)

Geographic description (score = 3)

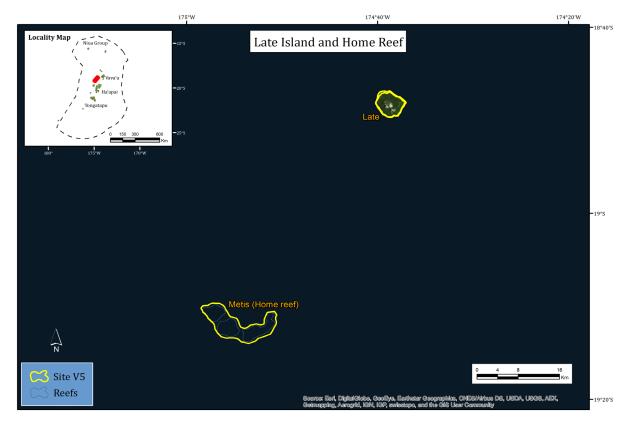
The site comprises of the lobe of shallow reef at the southern tip of the Vava'u Archipelago, between Mananita and Hakaufasi Islands.

Justification (score = 2.5))

The shallow lobe of reef at the Southern tip of the Vava'u Archipelago, by virtue of its position adjacent to open ocean pelagic habitats, is important for billfish and humpback whales (Pers. Comm. K. Stone, Atherton et al 2015). Vava'u is an especially important area for calving humpback whales (see Site L 4: Vava'u Waters). Banks and shallow areas south of Vava'u have been predicted as highly suitable habitat for adult humpback groups, which is consistent with results from satellite tagged humpback whales of New Caledonia which showed that whales move between New Caledonia and Tonga, and spend time around seamounts and shallow banks (Garrigue et al., 2010). Banks, shoals and reefs independent of islands can host the most pristine coral reef ecosystems.

Coral reefs around Maninita Island were surveyed by the BIORAP; these are the closest reefs to the site. It is assumed that there will be great similarity to the southern bank reefs and the reefs off Maninita Island. The latter displayed high diversity and abundance of coral and fish communities and was also reported to be in good condition (Atherton et al. 2015). See inshore areas (Site L 3: Inshore marine areas) and Vava'u marine areas (Site L 4: Vava'u Waters) for more detail about the coral reefs of Tonga.

Billfish are wide-ranging pelagic predators that aggregate around significant geomorphic features and exposed coral reefs, for feeding and spawning purposes (Morato et al., 2010). FishBase (Froese and Pauly, 2016) lists five species of billfish for Tonga: black marlin, striped marlin, Indo-Pacific blue marlin, short-billed spearfish and Indo-Pacific sailfish. Most data come from fisheries stock assessments; swordfish and striped marlin populations that frequent Tongan waters are assessed as part of the South-West Pacific Management Stock (Punt et al., 2015). Catch rates in Tongan waters have generally been higher for blue and black marlin, and lower for striped marlin (Williams and Bigelow, 1998).


Currently, little is known about significant areas for these pelagic species, but fisheries data show that they do aggregate, although their aggregation sites in Tonga are unknown. The identification of confirmed aggregation sites, or sites that are regularly visited, is important to guide future conservation efforts. Fishing charter websites (e.g. http://www.gamefishtonga.com/, http://www.bluemarlinmagic.fishing/location/, Accessed 17.02.2017) guarantee the presence of billfish in Vava'u, especially during the Austral summer, but do not give exact locations. This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 2)

Information for this site comes from personal communication and a peer-reviewed report. General knowledge about the species and habitats is readily available through peer-reviewed papers. Additional to the sources already listed for the sites above, there were two peer-reviewed papers on billfish in general, one report on billfish catch rates that included Tongan waters, and two websites specific to billfish in Vava'u.

Obligations (score = 3)

The Environment Management Act 2002, Fisheries Management Act 2002, Whale Watching Act 2003 and Whale Watching Regulation 2013 all set out obligations for the protection of coral reef habitats, billfish and whales. Humpback whales, corals and some billfish are listed on the IUCN Red List, and most are also protected under CITES. The Convention on Biological Diversity lists obligations to protect habitats such as coral reefs.

3.2.2.5 SITE V 5: LATE ISLAND AND HOME REEF

FIGURE 18. SITE V 5: Late Island and Home Reef

TABLE 19. SITE V 5: Late Island and Home Reef. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Vava'u Island Group	Late Island and Home Reef	V5	9.5

Geographic boundaries

Late: (-19.1568, -174.9731) and (-19.2391, -174.8500); Home Reef: (-18.7732, -174.6587) and (-18.8352, -174.635744

Geographic description (score = 3)

Late Island and Home Reef, including nearshore coastal and shallow coral reef habitats and 5km around it which serves as foraging and resting areas for nesting turtles.

Justification (score = 2)

Late Island's reef and Home Reef are very important areas for corals and other reef and nearshore species, due to the lack of land-based pollution and low human impacts. Their remoteness lends the coral reef communities a degree of protection (through isolation). The relatively healthy and less exploited status of these habitats gives them a degree of resilience, and geographic isolation often leads to unique assemblages, genetic distinctness and the presence of endemics (see Site L 3: Inshore marine areas).

Late is also important as a turtle and seabird nesting island, also with reduced human disturbance due to its isolated location. (Pers. Comm. K. Stone, Atherton et al. 2015). See Site N 2: Tafahi Island nesting site above for more information on turtle and seabird nesting habitats. This site overlaps with EBSA 26 – Tongan Archipelago – which specifically notes the importance of the area for seabirds and turtles (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 1.5)

No peer-reviewed papers or reports, other than those providing general information identified previously, were available for this site. The importance of the site was confirmed through expert input and one technical report, and through inference from the distance of these reefs from human activities.

Obligations (score = 3)

There are legal obligations to protect turtle and bird nesting sites under the Parks and Reserve Act and the Fisheries Conservation (Management) Regulations 2010. Corals, turtles and seabirds are further afforded various levels of protection and management under the Environment Management Act 2002, Fisheries Management Act 2002 and Bird & Preservation Act, CAP 125. Corals and numerous coral reef species, as well as turtles and seabirds, are listed on the IUCN Red List and under CITES. The Convention on Biological Diversity lists obligations to protect coral reefs.

3.2.2.6 SITE V 6: WEST VAVA'U WETLANDS

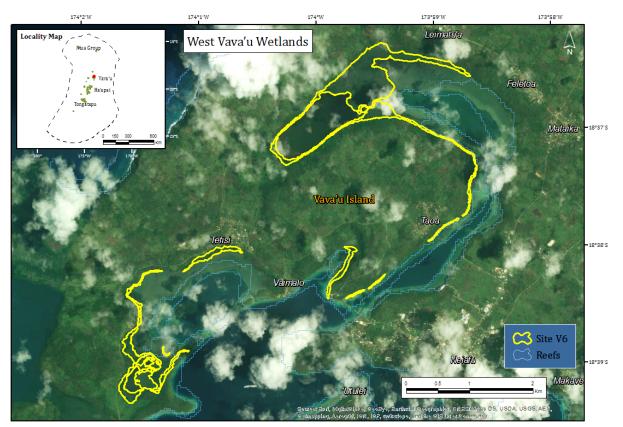


FIGURE 19. SITE V 6: West Vava'u wetlands

TABLE 20. SITE V 6: West Vava'u wetlands. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites - Vava'u Island Group	West Vava'u wetlands	V6	9.5

Geographic boundaries

(-18.6201, -173.9686) and -18.6441, -174.0368)

Geographic description (score = 2.5)

This site includes an area to the north of Tu'anuku, around Tefisi, known for the presence of seahorses. It also encompasses a shallow enclosed area or wetlands further north. They are known as Lake Ano and Ngofe Marsh, near Tu'anuku village at the west end of 'Uta Vava'u Island.

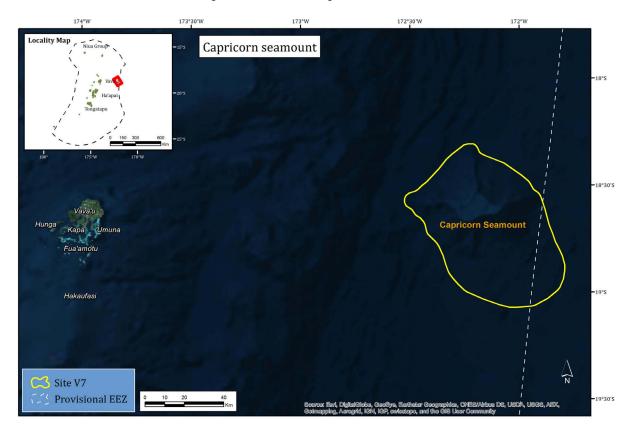
Justification (score = 2)

The shallow and enclosed habitats north of Tu'anuku include a freshwater marsh and an enclosed brackish lagoon, seahorse habitat and spawning grounds for milkfish (Chanos chanos), (K. Stone, pers. comm, and www.iwmi.org). Lake Ano (Lake Ono) is a large enclosed brackish lake near the west end of Vava'u. Ngofe Marsh is a small freshwater swamp in a depression to the south the lake. The swamp covers about 25 ha, and is completely overgrown with reeds, presumably Cyperus sp. No other similar habitats are known in Tonga.

Many seahorse and related species are threatened, to the point that the IUCN has a Seahorse, Pipefish and Stickleback Specialist Group (https://iucn-seahorse.org/). They are prized by the aquarium trade, and due to their cryptic nature they are extremely difficult to census or survey. The species present in Tonga include the seahorses Hippocampus histrix and H. kuda and the pipefishes Choeroichthys cinctus, Cosmocampus maxweberi, Solenostomus paradoxus and Syngnathoides biaculeatus. Which of these species are present at the site is unknown, but the identification of a known area for these cryptic species is uncommon.

The milkfish is one of the most important species in Tongan aquaculture (Izumi and Basco, 2014), and its ecology is one of continuous migration (Bagarinao, 1994), which indicates an important role in linking the food webs of inshore and offshore marine habitats. Milkfish are also wild-caught by local fishers. The importance of spawning aggregations, especially for commercially important species, is highlighted in Site N 3: Northern Niuatoputapu Kaloama.

Type and number of sources (score = 2)


There is one online source specifically describing the site, and there were three sources (two of them peer-reviewed) describing attributes of the site identified by the community, but not specifically about the site.

Obligations (score = 3)

There are no pieces of legislation specifically relating to wetlands in Tonga, and RAMSAR does not specifically mention Tongan wetlands. However, the Birds and Fish Preservation Act (1915, amended in 1974), the Forest Act (1961), the Parks and Reserves Act (1976) and the Public Health Act all have a bearing on the conservation of wetlands. Milkfish are provided for under the Fisheries Management Act 2002. The seahorses known to occur in Tonga (if not necessarily at the site) are listed as Vulnerable on the IUCN Red List, and are under Appendix II of CITES; the pipefishes are also listed on the IUCN Red List.

3.2.2.7 SITE V 7: CAPRICORN SEAMOUNT

A definition of seamounts is provided for Site L1 above. The Capricorn Seamount is technically a guyot, or a flattened seamount, which began as an emergent seamount and was then eroded and submerged (Harris et al., 2014). With a basal diameter of over 100 km, it is the largest seamount in Tonga.

FIGURE 20. SITE V 7: Capricorn Seamount

TABLE 21. SITE V 7: Capricorn Seamount. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Vava'u Island Group	Capricorn Seamount	V7	10.5

(-18.2224, -172.1069) and (-19.2001, -172.1414)

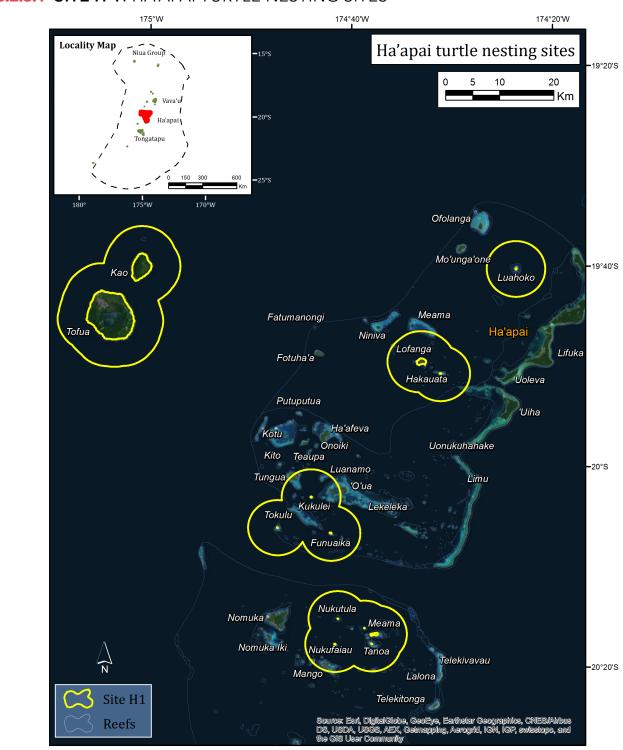
Geographic description (score = 3)

The Capricorn seamount (18°35'S, 172°12'W) is located almost 200 km east of the Vava'u island group.

Justification (score = 2.5)

The Capricorn guyot is the largest seamount in Tonga. Due to the movement of the ocean floor away from oceanic ridges, the sea floor in this region has been sinking gradually, and the flattened guyot was submerged to become an undersea flat-topped peak (www.utdallas.edu/~pujana/oceans/guyot.html, accessed 25/5/16). Data from seismic profiling and dredged samples suggest that it was once a volcanic island (https://books.google.ae/books?id=E8DEhXra8CAC&pg =PA37&lpg=PA37&dq=Capricorn+seamount&source=bl&ots=sCNHFVA5RZ&sig=pKk9ijUKcbOGfART9kyxhQVkE6E&hl =en&sa=X&ved=0ahUKEwihk4qt9fDRAhWL1RQKHetJCj0Q6AEIIjAC#v=onepage&q=Capricorn%20seamount&f=false , Accessed 15.02.2017).

Seamounts, guyots and similar undersea features provide habitat structure for benthic communities and aggregate pelagic species in an otherwise relatively featureless expanse of deep ocean (see Site L 1: Seamounts and ridges around 'Ata Island and Site L 5: Offshore west of Tongan Islands). This guyot contains a large number of species. For example, Kustanowicha (1962) found 87 species of Foraminifera alone. Many species are probably endemic to seamounts, and to guyots, in this part of the Pacific. It is the only guyot in Tonga (pers. comm. L. Matoto, Harris et al., 2014). The area of influence that the Capricornia Guyot extends to adjacent waters, due to its influence on seawater movements and consequent impact on marine life, to approximately 55m from its centre (Baker and Beaudoin, 2013). One of the features specified in EBSA 26 – Tongan Archipelago – is the Carpicorn Seamount, noted for the high productivity of the waters above it and the likelihood of finding cold-water stony corals on its slopes (Secretariat of the Convention on Biological Diversity, 2014).


Type and number of sources (score = 2)

Only one peer-reviewed reference was found for the Capricorn Seamount, but a previous section (Site L 1: Seamounts and ridges around 'Ata Island) draws upon six relevant peer reviewed papers and three reports whose findings apply to all seamounts, and much of this information probably applies to this site. There was also information from three Tongan experts specific to Tonga's seamounts, and some information about the Capricorn Seamount in the EBSA report.

Obligations (score = 3)

There are obligations to protect and sustainably manage many fish species, including some associated with seamounts, within the Fisheries Management Act 2002 and subordinate regulations, including terms and conditions associated with licenses. The Environment Management Act 2010 also describes obligations to protect some of the features associated with seamounts. Humpback whales and some sharks found around seamounts are on the IUCN Red List and listed under CITES. There are obligations also for the protection of sharks under Tonga's National Plan of Action for Sharks 2014–2016, including sharks typically known to aggregate around seamounts (e.g. scalloped hammerhead shark (Kimley pers. comm. See http://voices.nationalgeographic.com/2016/01/12/sharks-use-seamounts-as-compass-to-navigate-undersea/))(Tonga Fisheries Division & Pacific Islands Forum Fisheries Agency, 2013).

3.2.3 Ha'apai Island Group

3.2.3.1 SITE H 1: HA'APAI TURTLE NESTING SITES

FIGURE 21. SITE H 1: Ha'apai turtle nesting sites

TABLE 22. SITE H 1: Ha'apai turtle nesting sites. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Ha'apai Island Group	Ha'apai turtle nesting sites	H1	8

Tofua cluster: (-19.8039, -175.1743) and (-19.6226, -174.9349); Lofanga cluster: (-19.7570, -174.5826) and (-19.90669, -174.4923); Luahoko: (-19.6237, -174.4412) and -19.7193, -174.3470); Tokulu cluster: (-20.0676, -174.8634) and (-20.1288, -174.6369); Nukutula cluster: (-20.2012, -174.7324) and (-20.3559, -174.5848)

Geographic description (score = 2)

The key turtle nesting sites in Ha'apai are the uninhabited islands: Tofua, Luahoko, Hakau'ata and Lofaga Nukutula, Meama, Nuku'faiau, Tanoa, Kukulei, Tokulu, Funuaika and Luahoko. The site includes the sandy beach areas and surrounding waters of these islands, to at least 5km (Dobbs et al., 2007).

Justification (score = 1)

All the uninhabited islands of Ha'apai, such as Tofua, Luahoko, Hakau'ata and Lofaga Nukutula, Meama, Nuku'faiau, Tanoa, Kukulei, Tokulu, Funuaika and Luahoko, are important turtle nesting sites. The marine areas to at least 5km around those islands are therefore likely to be important aggregation areas during nesting season, from November to February (pers. comm. T. Halafihi, S. Vili, L. Matoto, V. Matoto, Dobbs et al., 2007). General information for nesting turtles is given for Site N 2: Tafahi Island nesting site. Specific information for Ha'apai was summarized by Havea and MacKay (2009) (http://www.seaturtle.org/mtn/archives/mtn123/mtn123p15.shtml). The nesting turtles include green and hawksbill turtles, with hawksbills predominating. At the time of their report, turtle hunting was still occurring in the Ha'apai islands, but perhaps not at the uninhabited islands listed above. This site overlaps with EBSA 26 – Tongan Archipelago – which specifically notes the importance of the area for turtles (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 2)

Additional to the peer-reviewed papers and reports giving general information on the importance of marine turtles and their nesting sites cited above, there was expert input on the importance of these islands in particular, and a web-based newsletter including data from social surveys.

Obligations (score = 3)

Both the Fisheries and Environment Management Acts refer to obligations to protect marine turtles and their nesting and foraging habitats. Both turtle species are listed on the IUCN Red List and are protected under CITES. The Convention on Biological Diversity lists obligations to protect threatened species and their habitats.

3.2.3.2 SITE H 2: OCTOPUS ("OCTAPUSY")

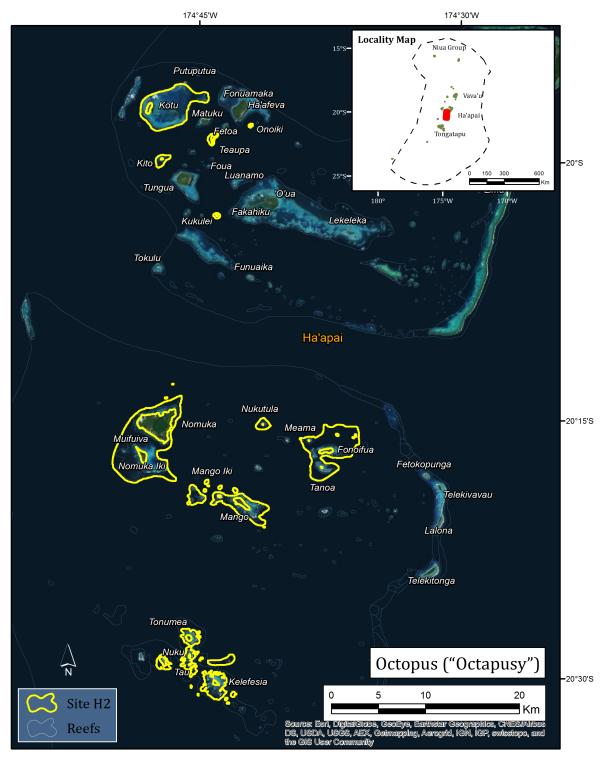


FIGURE 22. SITE H 2: Octopus ("Octapusy")

TABLE 23. SITE H 2: Octopus ("Octapusy"). Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale biophysically special, unique marine sites - Ha'apai Island Group	Octopus ("Octapusy")	H2	6.5

(-20.5144, -174.8513) and (-19.9390, -174.5716)

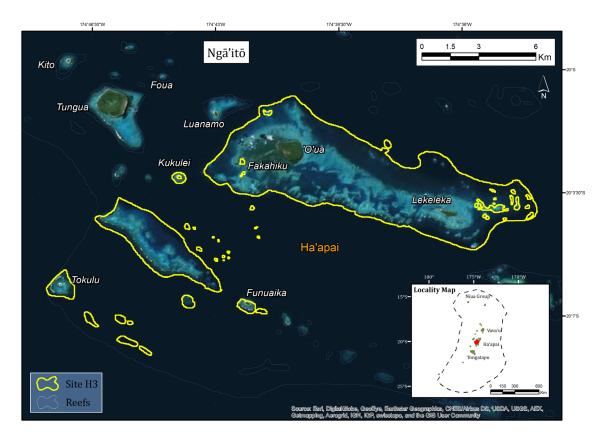
Geographic description (score = 2)

Octopus are abundant in the shallow reef habitats around some islands in the "Lulunga" and "Nuòmu'a" part of Southern Ha'apai: Fonifua, Kotu, Kito, Onoiki, Teaupa and Kukulei.

Justification (score = 1)

A number of island in the Ha'apai group (in the "Lulunga" and "Nuòmu'a" areas) support high densities of octopus and other prized marine invertebrates, such as sea cucumbers. An unusually high density of octopus is found within the coastal areas of some islands in the "Lulunga" and "Nuòmu'a" part of Southern Ha'apai: Fonifua, Kotu, Kito, Onoiki, Teaupa, Kukulei. This is likely indicative of a relatively unique habitat and ecosystem (pers. comm. T. Halafihi, S. Vili). Coupled with the fact that these areas also tend to be rich in sea cucumbers, the high densities of octopus suggest that this could be a relatively intact environment, or that is has high resilience to artisanal fishing.

Octopus populations are a difficult resource to manage due to their short life span, rapid growth, high natural mortality, sensitivity to environmental conditions and difficulty in conducting surveys for stock assessments (Emery et al., 2016). Their overall sensitivity results in rapid declines when environmental pressure arises, but also rapid recovery during stable times or once pressures cease (Pierce et al., 2008). This makes them good indicators of overall environmental condition (Quetglas et al., 2016). Communities in Tonga, including in Ha'apai, often raise the declining number and size of octopus in their catch as one of their concerns (MAFFF, 2011). This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).


Type and number of sources (score = 1.5)

Three peer-reviewed references on the general importance of octopus, their life-history and value to fisheries, and their high sensitivity to environmental conditions were available from other marine regions. The importance of the listed islands to maintaining high octopus densities comes from expert advice, and the concern over declining octopus, specific to Ha'apai, was sourced from a Fisheries report.

Obligations (score = 2)

Both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect octopus populations. The Convention on Biological Diversity lists obligations to protect fisheries resources.

3.2.3.3 SITE H 3: NGĀ'ITŌ

FIGURE 23. SITE H 3: Ngā'itō

TABLE 24. SITE H 3: Ngā'itō. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Ha'apai Island Group	Ngā'itō	H3	6

Geographic boundaries

(-20.0552, -174.8127) and (-20.0749, -174.5614)

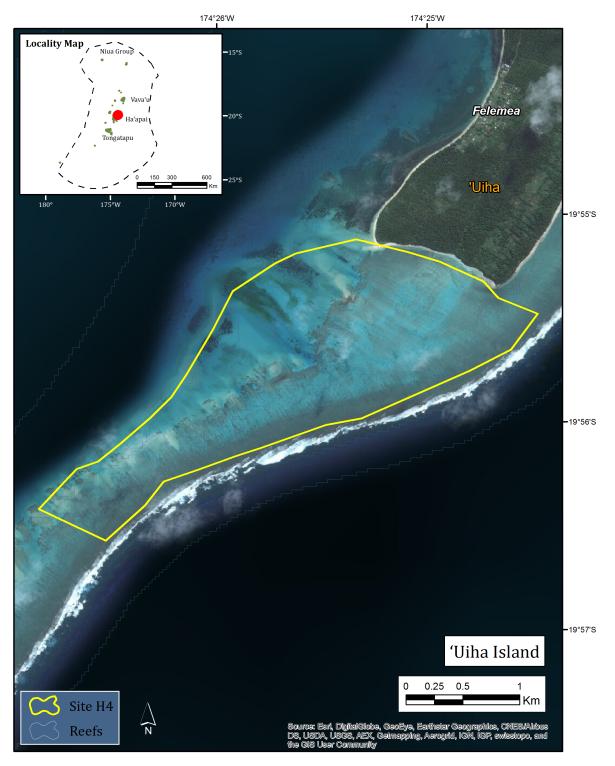
Geographic description (score = 2)

Ngā'itō encompasses shallow reef habitat for the curryfish Stichopus hermannii, so this site includes coral reef areas fringing the island of 'O'ua, and a large detached reef to the south of the island.

Justification (score = 1)

The reefs surrounding 'O'ua Island, and reefs directly to the south in the Ha'apai group support high densities of the sea cucumber species "Lomu", also known as the curryfish or *Stichopus hermannii*. Populations of this species are declining elsewhere from overfishing.

The density of the sea cucumber species "Lomu" (curryfish or *Stichopus hermanni*) is uniquely high around the northern Ha'apai island of 'O'ua. The ability for this species to maintain high densities in the case of low or absent exploitation probably stems from the fact that it reproduces asexually (Ngaluafe, 2007). This further enhances the value of the site, as it could provide a larval source to replenish populations on more exploited reefs. The high density of this otherwise exploited species suggests that these reefs may offer something unique in their environment that may also impact positively on biodiversity in general (pers. comm. T. Halafihi, S. Vili). This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).


Type and number of sources (score = 1)

The only sources available for this site are the expert advice of workshop attendees, and a thesis relating to sea cucumbers in Tonga.

Obligations (score = 2)

Both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect sea cucumbers and their habitat. The Convention on Biological Diversity lists obligations to protect fisheries resources.

3.2.3.4 SITE H 4: 'UIHA ISLAND

FIGURE 24. SITE H 4: 'Uiha Island

TABLE 25. SITE H 4: 'Uiha Island. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Ha'apai Island Group	'Uiha Island	H4	7.5

Geographic boundaries

(-19.9314, -174.4516) and (-19.9263, -174.4071)

Geographic description (score =3)

This site is the reef extending from the southern part of 'Uiha Island.

Justification (score = 1)

The southern part of 'Uiha island, where Felemea Special Management Area (SMA) is located, is the only known home of the Kaloa'a (the antique ark shell, *Andara antiquata*). This area is probably a special habitat that is also important for other shallow reef species (pers. comm. T. Halafihi, S. Vili). The Kaloa'a is disappearing from many parts of the Pacific, and the Felemea SMA, which protects the reef extending from the southern part of 'Uiha Island, supports a significant population of A. antiquata. The Felemea SMA was subject to a fisheries survey after its implementation, but data were too sparse to draw conclusions about the reef community (Webster, 2013). However, the Coastal Community Management Plan (CCMP) for Felemea SMA noted the Kaloa'a as one of the key factors driving the need for management, as they had been overfished and were found only in deeper waters; it sets out a plan for their protection (MAFFF, 2008a). It is likely that the regulations imposed within the SMA are successful in protecting the Kaloa'a population, and possibly also other species. This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 1.5)

Expert advice and two technical reports were available to suggest that the positive effects of the SMA were a key driver of the high density of Kaloa'a, and potentially other positive ecosystem effects.

Obligations (score = 2)

Both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect invertebrate stocks. The Convention on Biological Diversity lists obligations to protect fisheries resources. Felemea was also declared a Multiple Use Conservation Area in the 1970s (Palaki et al., 2007).

3.2.3.5 SITE H 5: NORTHEASTERN HA'APAI

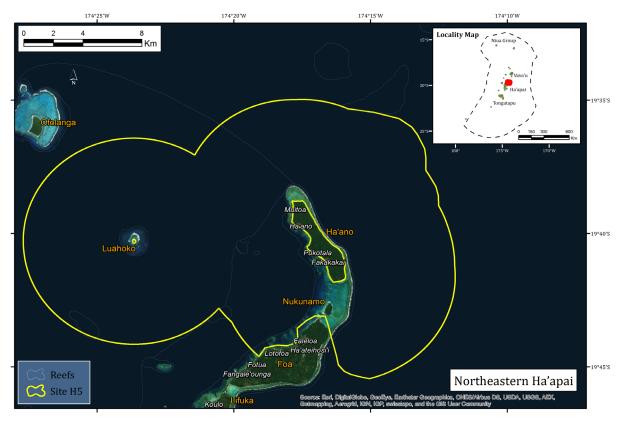


FIGURE 25. SITE H 5: Northeastern Ha'apai

TABLE 26. SITE H 5: Northeastern Ha'apai. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Ha'apai Island Group	Northeastern Ha'apai	H5	6.5

Geographic boundaries

-(19.5599, -174.4463) and (-19.7635, -174.2079)

Geographic description (score = 2)

This site encompasses the waters around Luahoko and Ha'ano Islands and east of those islands.

Justification (score = 1)

Skipjack tuna (*Katsuwonus pelamis,* or 'Atu) are relatively small, short-lived and fast growing, and despite their high value to fisheries, their populations are relatively resilient (Romanov and Chassot, 2017). The waters around two of the islands in northeastern Ha'apai are particularly renowned for their skipjack tuna aggregations.

Skipjack tuna aggregations are found throughout Tongan waters, but the waters around Luahoko and Ha'ano Islands and east of those islands is particularly valued for the regularity and consistency of these aggregations (pers. comm. T. Halafihi, S. Vili). Skipjack tuna school in surface waters with birds, drifting objects, sharks, and whales, and feed on fish, crustaceans, cephalopods, and molluscs; it is an important prey item for larger pelagic fishes (Froese and Pauly, 2016). Aggregations are usually ephemeral and unpredictable; consistent aggregation sites may point to particularly productive areas (Yen and Lu, 2016). Skipjack tuna are not commercially exploited by the Tongan longline fleet (MAFFF, 2015), but they are perhaps the most important tuna species for artisanal fishers. Therefore, any knowledge of predictable aggregation areas is likely to come from anecdotal sources during village consultations. This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

This aggregation of tuna also had cultural significance being tied to a Tongan legend (https://www.livingoceansfoundation. org/a-gift-of-atu/, accessed 8/2/17)

Type and number of sources (score = 1.5)

There are no peer-reviewed publications or technical reports relating directly to this site; the low commercial value of skipjack tuna excludes them from most fisheries reports. There were two relevant peer-reviewed publications. The importance of the site was indicated through expert advice at the workshop.

Obligations (score = 2)

Both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect skipjack tuna populations. The Convention on Biological Diversity lists obligations to protect fisheries resources.

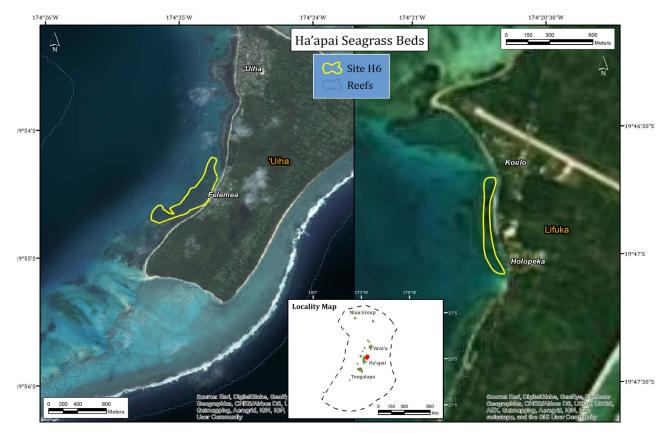


FIGURE 26. SITE H 6: Ha'apai seagrass beds

TABLE 27. SITE H 6: Ha'a	pai seagrass beds.	Overall score (based	upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Ha'apai Island Group	Ha'apai seagrass beds	H6	9.5

Geographic boundaries

Felemea: (-19.9111, -174.4207) and (-19.9061, -174.4098); Koulo: (-19.7783, -174.3448) and (-19.7848, -174.3454)

Geographic description (score = 3)

The seagrass beds for this site are located on the western sides of Lifuka and 'Uiha Islands, just offshore from Felemea and Koulo villages.

Justification (score = 2.5)

Seagrass beds are important habitats, feeding areas and nursery grounds for many species, including a number of species of commercial and conservation significance; they are threatened by poor water quality and coastal development (for more information about seagrass beds see Site L 3: Inshore marine areas). Significant seagrass beds exist off Felemea and also off Koulo village (pers. comm. S. Vili). Large patches of seagrass (especially Syringodium spp.) are mentioned in the results of a FAO survey, but only for 'Uiha Island (http://www.fao.org/docrep/005/AC894E/AC894E04.htm).

There are seagrass beds throughout Tonga, but there have been no comprehensive country-wide surveys to identify their exact locations. This expert input provides certainty of the location of these seagrass beds. This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 2)

Some direct information is available for the site itself, from a FAO report and expert input from local sources. Peerreviewed papers are listed for Site L 3: Inshore marine areas.

Obligations (score = 2)

The Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect seagrass beds.

3.2.3.7 SITE H 7: HA'APAI WHALE AREAS

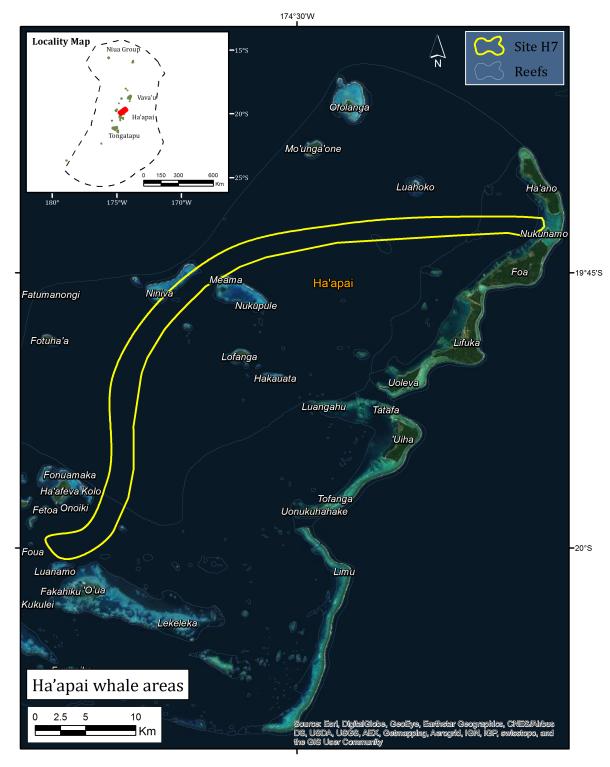


FIGURE 27. SITE H 7: Ha'apai whale areas

TABLE 28. SITE H 7: Ha'apai whale areas. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Ha'apai Island Group	Ha'apai whale areas	H7	9

(-19.8958, -174.7971) and (-19.7073, -174.2758)

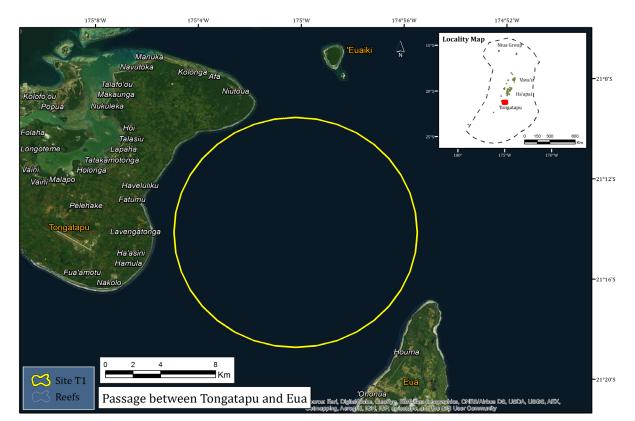
Geographic description (score = 3)

The pathway for humpback whales through the Ha'apai islands is from the northeast (the gap between Ha'ano and Foa Island), moving west and then south through the northern island group of Lulunga and then south to the Mu'omu'a island group.

Justification (score = 1)

Whales come into Ha'apai from the northeast, especially the gap between Ha'ano and Foa Island, move west and then south through the northern island group of Lulunga and then further south to the Mu'omu'a island group (pers. comm. T. Halafihi). They are sometimes also seen to the west of Ha'apai towards the Tonga Trench, and to the east around the seamounts (Dept of Fisheries). Whale watching research has recorded the greatest number of sightings to the west of Ha'ano and Foa Islands (Kessler and Harcourt, 2012). General information about humpback whales in Tonga is summarized above for Site L 4: Vava'u Waters. Some specific information is available on the abundant tourism websites (e.g. http://matafonua.com/whales/) that take advantage of the predictable return of the whales each year to give birth.

The Ha'apai island group has only recently been recognized as a significant area for whales, although historically it was here that mythological stories gave whales particular importance (Kessler and Harcourt, 2012). However, whale watching research suggests that humpback whales have low site fidelity in Ha'apai, indicating that they may move through the area rather than staying there (Kessler and Harcourt, 2012). This site overlaps with EBSA 26 – Tongan Archipelago – whereby the importance of this site to humpback whales is one of the key features of its EBSA status (Secretariat of the Convention on Biological Diversity, 2014).


Type and number of sources (score =2)

The main sources of information about humpback whales in waters around Ha'apai in particular was a website advertising whale watching, a peer-reviewed paper on whale watching research, and expert advice from workshop participants.

Obligations (score = 3)

Tourism activities associated with whales are controlled by the Whale Watching and Swimming Regulations, 2013. There are further obligations for protecting whales under the Fisheries Management Act 2002, Environment Management Act, Whale Watching and Swimming Act 2009. Humpback whales are on the IUCN Red List and protected under CITES. The Convention on Biological Diversity lists obligations to protect threatened species and their habitats.

3.2.4 Tongatapu Island Group

3.2.4.1 SITE T 1: PASSAGE BETWEEN TONGATAPU AND EUA

FIGURE 28. SITE T 1: Passage between Tongatapu and Eua

TABLE 29. SITE T 1: Passage between Tongatapu and Eua (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Tongatapu Island Group	Passage between Tongatapu and Eua	T1	8.5

Geographic boundaries

(-21.1530, -175.0756) and (-21.3182, -174.9319)

Geographic description (score = 2)

This site includes the channel between the islands of Tongatapu and Eua, noted for a high abundance of mullet. Mullet are a family of fishes (Mugilidae) that are highly prized, and therefore heavily targeted, in Tongan fisheries.

Justification (score = 2)

Mullet are a family of fishes (Mugilidae) that are highly prized as food, and therefore heavily targeted, in Tonga's fisheries. Areas known to host mullet in high abundance were, in the past, targeted with fences (Fa'anunu and Kimura, 1995). The decline in mullet populations is especially pronounced near human population centres (http://www.fao.org/fi/oldsite/FCP/en/TON/profile.htm). Mullet provide an ecologically important link in the energy flow within estuarine and marine communities, removing detritus and microalgae from the top layer of sediments. Mullet also graze on epiphytes and epifauna from seagrasses as well as surface scum containing microalgae at the air-water interface (Carpentier et al., 2014).

The sea between Tongatapu and Eua is an important passageway for mullet, which move through the area from the eastsoutheast to the west-northwest. The passage may also be of significance for movement of other pelagic species (pers. comm. T. Halafihi). Tourism sites list humpback whales and dolphins among the common sightings when travelling by boat between these two islands, but it is unclear whether they refer to the same area (https://greenglobaltravel.com/top-5-ecotourism-activities-on-eua-island-tonga/). This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 1.5)

Sources are limited to expert advice and two websites, a report about the importance of mullet to Tongan fisheries and a peer-reviewed paper about the importance of mullet in trophic dynamics.

Obligations (score = 2)

Both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect mullet. The Convention on Biological Diversity lists obligations to protect fisheries resources.

3.2.4.2 SITE T 2: SEISIA / NUKUNUKUMOTU ISLAND MANGROVES

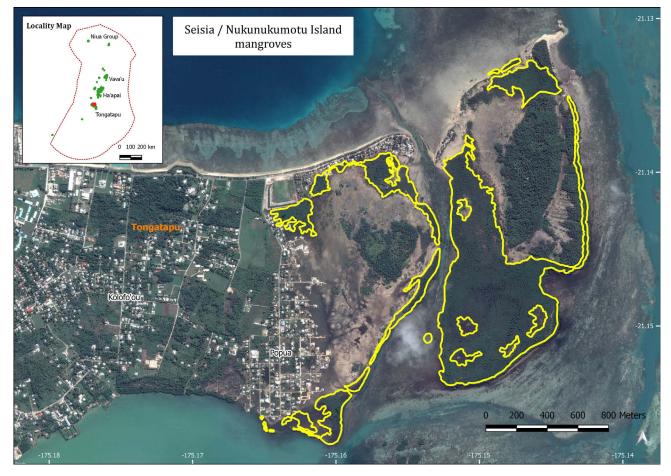


FIGURE 29. SITE T 2: Seisia / Nukunukumotu Island mangroves

TABLE 30. SITE T 2: Seisia / Nukunukumotu Island mangroves (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Tongatapu Island Group	Seisia / Nukunukumotu Island mangroves	T2	10

(-21.1461, -175.1680) and (-21.1471, -175.1375)

Geographic description (score = 3)

This site includes the coastal areas of islands at the western entrance to the Fanga'uta Lagoon on Tongatapu, which is rich in mangroves and other marine resources. Mangroves on Tongatapu Island have been subject to destruction and pollution, making existing stands more important for protection.

Justification (score = 2)

This site is at the western entrance to the Fanga'uta Lagoon on Tongatapu Island. It is rich in mangroves and other marine resources important to the people in Patangata and other areas (Pers. Comm. K. Faka'osi and D. Foliaki, MEIDECC). The importance of mangrove ecosystems has been described above for Site L 3: Inshore marine areas.

An environmental management plan for Fanga'uta lagoon identified this site as sustaining the most important patches of mangroves remaining in the lagoon, near Nukuhetulu and at Nukunukumotu Island (Prescott et al., 2012). The plan proposes to set aside areas of mangrove forest to function fully as fish habitats and part of the lagoon's cleaning system. Water movement is strongest through the entrance of the lagoon, with tidal circulation creating a current of up to 1.1 m/s (Damlamian, 2008), promoting exchange of biological material between the enclosed lagoon and the open sea. The management plan identifies mangrove destruction as a significant problem causing erosion and affecting people's land, making existing healthy stands of mangrove forest especially valuable. Activities that could damage the habitats in this region of the lagoon, such as dredging, reclamations and reef or seagrass damage, have already been prohibited to help protect spawning and nursery grounds, and migration pathways of commercially important fish species, such as mullet (Prescott et al., 2012). This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 2)

Sources for the importance of mangroves in general, and for Tonga, are given for Site L 3: Inshore marine areas. Sources for this particular site include expert advice and two technical reports.

Obligations (score = 3)

An environmental management plan exists for Fanga'uta lagoon, which includes the site and its values (Prescott et al., 2012). It identifies mangrove destruction as a significant problem causing erosion and affecting people's land. Mangroves are protected by national and international legislation. Many species that use mangroves are harvested and are therefore covered in the Fisheries Management Act 2002 and Environment Management Act 2010. The habitat itself are protected through the National Spatial and Management Act 2012 and the Environment Impact Assessment Act 2003, and the National Forest Policy (2008) has provisions for the protection of mangroves and other wetland ecosystems.

3.2.4.3 SITE T 3: FANGA'UTA LAGOON

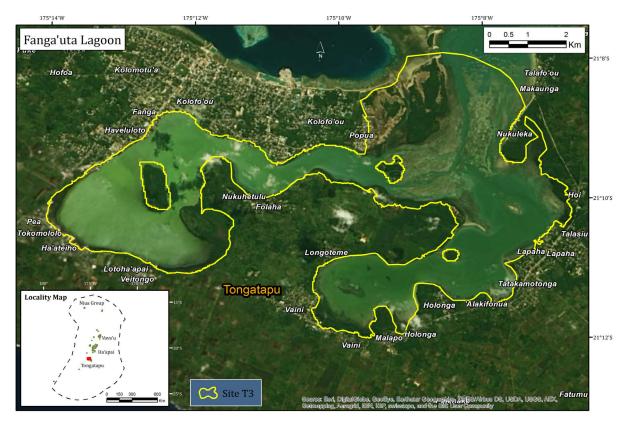


FIGURE 30. SITE T 3: Fanga'uta Lagoon

TABLE 31	. SITE T 3: Fanga'uta	Lagoon. Overal	l score (based i	upon information below))
-	J			,	

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Tongatapu Island Group	Fanga'uta Lagoon	Т3	10

Geographic boundaries

(-21.1534, -175.2389) and (-21.1890, -175.1077)

Geographic description (score = 3)

The Fanga'uta Lagoon is the enclosed lagoon of Tongatapu. Fangakakau is a further embayment within the Fanga'uta Lagoon, serving as a second lagoon system. The Fanga'uta Lagoon encompasses an area of 36.6 km² with a mean depth of ~1.4 m and a maximum of 6 m, excluding the entrance channel (Damlamian, 2008).

Justification (score = 1)

The Fanga'uta and Fangakakau Lagoons (referred to, collectively, as "the Fanga'uta Lagoon") support several types of very diverse and productive ecosystems, including mangroves, mudflats, seagrass beds, and coral patch reefs (UNDP and Government of Tonga, 2014). In particular, the shallow, almost completely closed Fanga'uta Lagoon is an important breeding ground for birds and fishes. Generally, sheltered environments offer good connectivity between complementary habitats (e.g. seagrass beds, mangroves, reefs) and confer greater resilience and biodiversity value to the entire lagoonal ecosystem (Brown et al., 2016).

Tonga had an area of 1,000 ha of mangroves in the 1980s, but coastal reclamation, particularly on shores adjacent to Nuku'alofa in Tongatapu, have dramatically reduced mangrove cover since then. The World Atlas of Mangroves (2010) gave an estimate of mangrove areas of 336 ha for Tonga. An earlier estimate stated the total area of mangroves at 10 km², representing 1.33 % of Tonga's total land area of 750 km² (MESCAL, 2013). Tonga has eight mangrove species;

two of the most common are *Rhizophora samoensis* and *Rhizophora stylosa* (Ellison, 2009). The greatest extent of mangrove forest in Tonga remains around the Fanga'uta Lagoon (Ministry of Lands, Environment, Climate Change and Natural Resources, 2014). The fauna and flora of the Fanga'uta Lagoon system was relatively diverse when last documented in 1984 and 2001: 96 species of fishes; 9 species of large algae (macroalgae); 2 species of seagrasses; 16 species of nearshore plants; 1 species of jellyfish; 1 species of sea anemone; 30 species of hard and soft corals; 40 species of mollusks (including octopus, clams and other shellfish); over 13 species of crustaceans; and over 11 species of echinoderms (starfish, cucumbers and urchins)(UNDP and Government of Tonga, 2014). The country-wide values for these species are listed at Site L 3: Inshore marine areas.

The Western part of Fanga'uta Lagoon is Fangakakau Lagoon, which is a feeding ground for mullet, has seagrasses, algae and mangroves which are, amongst other things, habitat for seashells (kaloa'a, or antique ark). The government is investing in multiple rehabilitation projects in this area (e.g. R2R/MESCAL) (pers. comm. K. Faka'osi and D. Foliaki, MEIDECC, UNDP and Government of Tonga, 2014).

There are rich mangrove areas are located along the coast north and west of Nukuhetulu Village, including around to the west side of the peninsula north of the village. This site has some of the oldest mangroves in Tonga, and Nukuhetulu Village heavily depends on this resource for crabs and tapa making (pers. comm. K. Faka'osi and D. Foliaki, MEIDECC; MESCAL). This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Unfortunately, recent information about the Fanga'uta Lagoon has focused on its poor environmental state and the need to rehabilitate parts of it, set out in detail in a Ridge to Reef Project report (UNDP and Government of Tonga, 2014). Stakeholders have identified the loss of species and habitats, the reduction of mangrove areas, declining size and abundance of food fishes, and the heavy impacts of pollution and litter (Prescott et al., 2012). Despite the production of a management plan, development and land reclamation around the lagoon continue to contribute to deforestation and sedimentation (Ministry of Lands, Environment, Climate Change and Natural Resources, 2014; UNDP and Government of Tonga, 2014). The poor water quality in the more enclosed parts of the lagoon compared with the lagoon entrance and waters outside the lagoon was also noted (Ministry of Lands, Environment, Climate Change and Natural Resources, 2014). Despite the existing values of the remaining ecosystems around the lagoon supported by sources that are specifically about this site, most sources discuss the degraded state of the lagoon, leading to a reduced score.

Type and number of sources (score = 3)

Five technical reports cover the special attributes and vulnerability of the Fanga'uta Lagoon, with additional peerreviewed papers and reports covering the general attributes of the habitats and species making up the lagoon ecosystem (see also Site L 3: Inshore marine areas).

Obligations (score = 3)

Both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect Fanga'uta Lagoon and all the species it contains that are of commercial or conservation significance. The lagoons were declared a Marine Reserve in 1974 by the government (UNDP and Government of Tonga, 2014). Additionally, a number of species (e.g. corals and giant clams) are listed on the IUCN Red List and protected under CITES. The National Forest Policy (2008) has provisions for the protection of mangroves and other wetland ecosystems.

3.2.4.4 SITE T 4: FUNGAFELE'AVE MANGROVES

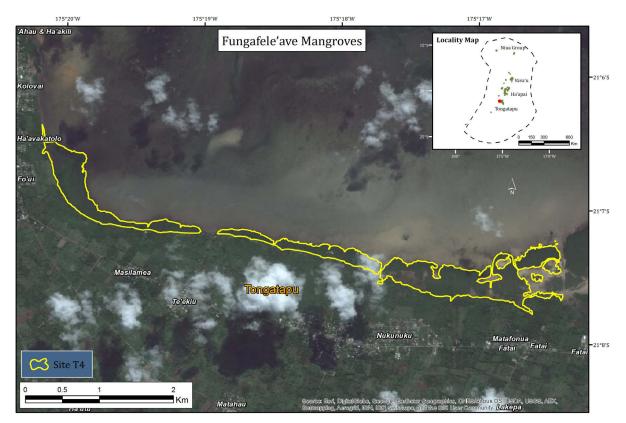


FIGURE 31. SITE T 4: Fungafele'ave mangroves

TABLE 32. SITE T 4: Fungafele'ave n	nangroves (based up	on information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Tongatapu Island Group	Fungafele'ave mangroves	T4	7

Geographic boundaries

(-21.1059, -175.3365) and (-21.1311, -175.2741)

Geographic description (score = 3)

This site includes the mangrove forests along the northwest coast of Tongatapu Island, near Nukunuku and Teekiu Villages.

Justification (score = 1)

Stands of mangrove forest growing along the northwest coast of Tongatapu Island, in the low-lying areas of coastline oriented east-west, near Nukunuku and Teekiu Villages, are suffering from erosion and sea level rise. These mangroves are especially important for protecting the coastlines of adjacent villages (pers. comm. L Tifui, MEIDECC). The importance of mangrove ecosystems is outlined above for Site L 3: Inshore marine areas. In areas more exposed to the open ocean, such as this site, mangroves play an even more important role in protecting coastlines and villages (Guannei et al., 2016). They stabilize sediments, filter land-based run-off and break the intensity of oncoming waves. However, they are vulnerable to rising sea levels and storm surges associated with cyclones, which are predicted to increase in intensity as the global climate changes (Ellison, 2009). This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 1)

Sources for the importance and vulnerability of mangroves in general are listed for Site L 3: Inshore marine areas, but there is no written material directly relevant to the site itself. The value of the site was conveyed through expert knowledge.

Obligations (score = 2)

Both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect mangrove ecosystems in Tonga. The National Forest Policy (2008) has provisions for the protection of mangroves and other wetland ecosystems.

175°24'W 175°18'W 175°12'W 174°48'W 175°30'W 175°6'W 175°W 174°54'W locality Map -20°54's $\Delta_{\mathbf{N}}$ CS Site T5 Tongatapu coral reefs 10 20 Reefs is de, Usda, Usge, Aex, Kn

3.2.4.5 SITE T 5: TONGATAPU CORAL REEFS

FIGURE 32. SITE T 5: Tongatapu coral reefs

TABLE 33. SITE T 5: Tongatapu	coral reefs. Overall score	based upon information b	oelow)
TADLE 33. SILL I S. TONYatapu			

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Tongatapu Island Group	Tongatapu coral reefs	T5	12

Geographic boundaries

(-21.0846, -175.4061) and (-20.9724, -174.7885)

Geographic description (score = 3)

Coral reefs around Tongatapu include a narrow band of fringing reef along the south coast, and extensive reef formation to the north, extending approximately 50km from the main Island. These reef formations to the north include fringing reefs around the smaller islands, and barrier and submerged reefs. Some reefs are associated with islands, others are not.

Justification (score = 3)

Coral reefs are highly diverse and productive ecosystems, host to the largest portion of shallow marine biodiversity and provide critical habitat for many species of conservation and commercial importance. In Tonga, coral reefs range from fringing reefs to barrier and platform reefs, and atolls (see Site L 3: Inshore marine areas). On Tongatapu, the greatest portion of reef formation is north of the main island. Some 192 species of scleractinian corals have been recorded at 11 reefs around Tongatapu, as well as 229 reef fish from 39 families, 55 bivalves, 83 gastropods and 13 holothurians (http:// www.reefbase.org/global_database/dbr5,24,TON,89.aspx)

General information about the value and vulnerability of coral reefs in Tonga is given above for Site L3. Tongatapu has a unique coralline algal reef formation fringing the southern coastline, which is exposed to prevailing southeasterly swells (Lovell and Palaki, 2000). Adjeroud et al. (2013) recorded 37 hard coral genera around Tongatapu; the country-wide estimate is 40 genera (Ellison, 2009), indicating that these reefs host an almost complete complement of Tonga's coral diversity. The Tongatapu coral assemblage was dominated by *Montipora, Acropora* and *Porites*. Spatial patterns in the coral assemblages suggested a strong reliance of local recruitment sources from brooding coral species (Magalon et al., 2005). High numbers of recruits suggested a good potential for reef recovery in the short-term, if stressors that inhibit the survival of juvenile corals are removed (Adjeroud et al., 2013). At a time of multiple stresses on coral reefs worldwide, coral reefs with a good recovery potential are of special value (see Site L 3: Inshore marine areas).

The coral reefs around Tongatapu were described as important for many people for a variety of uses including artisanal fishing, snorkelling, kayaking and canoeing and other types of recreation. (pers. comm. L. Matoto, M. Matekitonga and F. Hakaumotu). Coral reefs around Tongatapu are considered to be under greater pressure when compared to reefs further away from population centres (Adjeroud et al., 2013). This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 3)

Coral reefs are subject to countless peer-reviewed publications each year; there is a wealth of general information. Some Tongan coral reefs have also been subject to a number of surveys in recent years, resulting in high-quality peer-reviewed studies. Information about the reefs of Tongatapu is more difficult to find, with three peer-reviewed papers and expert advice to use as sources.

Obligations (score = 3)

Coral reefs in Tonga are subject to a number of national and international obligations, protecting them as an ecosystem, but also protecting individual species. Both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect coral reefs. Corals and some coral reef fishes are listed on the IUCN Red List, and protected under CITES. The Convention on Biological Diversity lists obligations to protect coral reefs.

3.2.4.6 SITE T 6: WATERS AROUND 'EUA AND HAKAUMAMA'O REEF

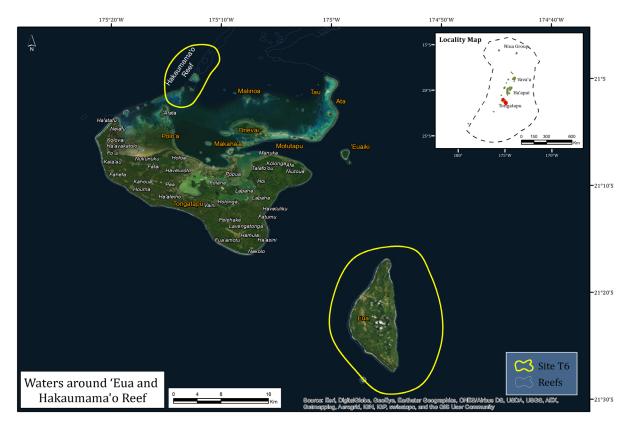


FIGURE 33. SITE T 6: Waters around 'Eua and Hakaumama'o Reef

TABLE 34. SITE T 6: Waters around 'Eua and Hakaumama'o Reef. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Tongatapu Island Group	Waters around 'Eua and Hakaumama'o Reef	Т6	7

Geographic boundaries

(-21.2043, -175.2322) and (-21.2751, -175.0878)

Geographic description (score = 2)

This site includes waters around 'Eua Island and Hakaumama'o Reef, located to the north of Tongatapu Island, containing habitats suitable to both coral reefs and pelagic sharks.

Justification (score = 1)

These waters support notable populations of sharks (pers. comm. S. Tatafu). General knowledge about the vulnerability and importance of top predators such as sharks is presented above for Site V 1: Southern Vava'u islands and turtle nesting sites. Top predators such as sharks are the first to disappear under high fishing pressure. The removal of top predators can have top-down effects throughout the food web, even changing the composition of benthic communities. Areas with high shark densities are indicators of healthy ecosystems. There is no specific information for this site, except for a report on clam surveys in the 1980s which showed a high density and diversity of giant clams on these reefs (McKoy, 1980). This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 1)

Sources about sharks in Tonga were listed for Site V 4: Vava'u Southern Bank. Only one paper and expert advice were available for the site.

Obligations (score = 3)

Some sharks are on the IUCN Red List and listed under CITES. There are obligations also for the protection of sharks under Tonga's National Plan of Action for Sharks 2014–2016. There are also provisions for their protection under both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect these natural attributes. Hakaumama'o Reef is a protected area under the IUCN (Paine, 1991; Palaki et al., 2007). The Convention on Biological Diversity lists obligations to protect coral reefs.

3.2.4.7 SITE T 7: COASTAL HAVELULIKU AND FUA'AMOTU VILLAGE

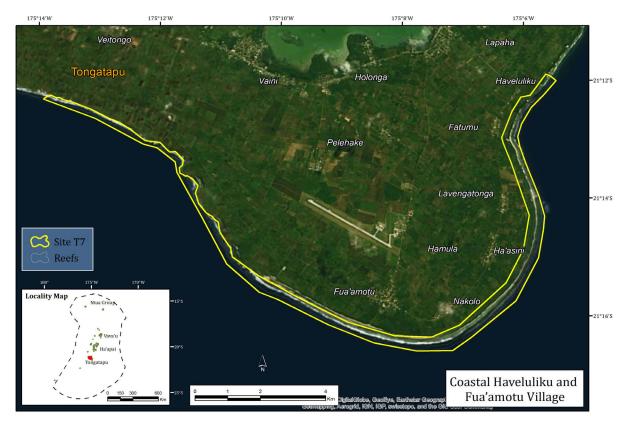


FIGURE 34. SITE T 7: Coastal Haveluliku and Fua'amotu Village

TABLE 35. SITE T 7: Coastal Haveluliku and Fua'amotu Village. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Tongatapu Island Group	Coastal Haveluliku and Fua'amotu Village	T7	6

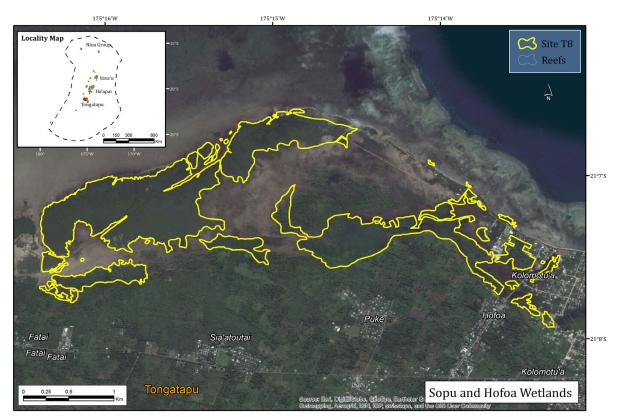
Geographic boundaries

(-20.7534, -176.882) and (-24.3272, -175.769)

Geographic description (score = 2)

The rocky shores along the southern coastline of Tongatapu provide ideal habitat for mussels.

Justification (score = 1)


This part of Tongatapu is known for Kuku (mussels) (pers. comm. E. Fonua). Mussels are an important component of the Tongan diet, and are plentiful in certain areas. They are generally found in rocky intertidal habitats, where they gather in clumps and filter feed. Where they occur in high densities, mussels can act as important ecosystem engineers, filtering the surrounding water, stabilising sediments, enhancing habitat complexity and providing settlement habitat for other organisms (Buschbaum et al., 2009). In Tongatapu, declining mussel harvest has been listed as one of the concerning trends (UNDP and Government of Tonga, 2014), making areas rich in mussels more valuable. This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 1)

Expert advice and unpublished reports were available for mussels in Tonga, and only expert comments related directly to the site. One peer-reviewed paper was used to highlight the importance of mussels in general.

Obligations (score = 2)

Both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect mussels. The Convention on Biological Diversity lists obligations to protect fisheries resources.

3.2.4.8 SITE T 8: SOPU AND HOFOA WETLANDS

FIGURE 35. SITE T 8: Sopu and Hofoa wetlands

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Tongatapu Island Group	Sopu and Hofoa wetlands	Т8	8.5

Geographic boundaries

-(21.1086, -175.2724) and (-21.1322, -175.2219)

Geographic description (score = 3)

This site includes the wetland system that exists along the stretch in front of the western end of Vuna Road in Nuku'alofa (in 2017 this is outside the Fisheries office in Tongatapu), from Sopu to Hofoa.

Justification (score = 2)

The wetlands located on this part of Tongatapu are important for their seagrass, mangroves, mud crabs and as fish breeding grounds (pers. comm. L. Matoto, M. Matekitonga, V. Matoto). This part of Tongatapu is known for Kuku (mussels; pers. comm. E. Fonua). There is general information about these systems for Site L 3: Inshore marine areas and Site N 3: Northern Niuatoputapu Kaloama. No specific information was available for the site itself. This site overlaps with EBSA 26 – Tongan Archipelago (Secretariat of the Convention on Biological Diversity, 2014).

Type and number of sources (score = 1.5)

General information about attributes of the site is available for two of the other sites above; there were no sources specific to the site.

Obligations (score = 2)

Both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect the wetlands between Sopu and Hofoa. The National Forest Policy (2008) has provisions for the protection of mangroves and other wetland ecosystems.

3.2.4.9 SITE T 9: 'EUEIKI ISLAND

FIGURE 36. SITE T 9: 'Eueiki Island

TABLE 37. SITE T 9: 'Eueiki Island. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale sites – Tongatapu Island Group	'Eueiki Island	Т9	8

Geographic boundaries

(-21.1085, -174.9728) and (-21.1367, -174.9850)

Geographic description (score = 3)

Turban shells are found in sandy areas of coral reefs and nearshore areas; this site includes all the shallow marine habitat surrounding 'Eueiki Island, which is located off Tongatapu Island.

Justification (score = 1)

'Eueiki Island is located off Tongatapu and 'Eua Islands and is well known for the marine gastropod 'Elili' (pers. comm. L. Matoto and V. Matoto). The marine gastropod 'Elili (Turban shells or *Turbo* spp.) are highly prized in Tongan artisanal fisheries and are therefore in decline; areas where turban shells are still abundant are rare. Tonga's most popular species of turban shells, now also used in aquaculture, are *Turbo marmoratus* (green snail), *T. setosus* and *T. argyrostrum* (http://www.tongafish.gov.to/images/documents/Publications/Brochures/Aquaculture%20in%20Tonga%20brochure.pdf, Accessed 16.02.2017). Green snails were considered critically endangered in Tonga by 2010 (Geocare & Petroleum Consult Ltd, 2010); restocking programs have been combined with education to prevent the harvest of new populations introduced into the shallow reef areas of Tongatapu (http://www.tongafish.gov.to/images/documents/Publications/ Brochures/Greensnails%20brochure.pdf, Accessed 15.02.2017). In Vava'u, the BIORAP recorded some *Turbo* spp., but no green snails (Atherton et al., 2015), and only a few individuals were found during the Vava'u CRSP SMA surveys (Ceccarelli, 2016). 'Eueki Island was one of the islands with historically high densities of green snails, and where additional farmed individuals were introduced. However, the Coastal Community Management Plan (CCMP) for 'Eueiki raised concerns about recent illegal harvesting of green snails (MAFFF, 2008b). The originally high density of green snails, coupled with the perceived need for protection by the community, makes this population important as spawning stock, to potentially provide larvae to adjacent islands.

Type and number of sources (score = 2)

Survey data that include marine gastropods such as turban shells exist for Vava'u and are summarized in two reports. Information about turban shells in Tongatapu was sourced from two websites linked to the Ministry of Fisheries, and expert advice. Information about green snails at the site itself was available in a CCMP.

Obligations (score = 2)

Both the Fisheries and Environment Management Acts (2002, 2010 respectively) refer to obligations to protect Turban shells. The Convention on Biological Diversity lists obligations to protect fisheries resources. 'Eueiki Island has been declared a Multiple Use Conservation Area (Palaki et al., 2007).

3.2.4.10 SITE T 10: 'ATA ISLAND

'Ata Island, an uninhabited island far to the south of Tongatapu, has significant nesting seabird populations and humpback whales migrate close to its coast.

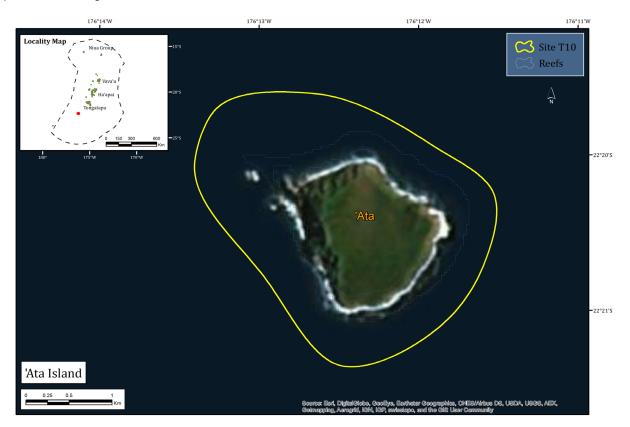


FIGURE 37. SITE T 10: 'Ata Island

TABLE 38. SITE T 10: 'Ata Island. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale biophysically special, unique marine sites – Tongatapu Island Group	'Ata Island	T10	9

Geographic boundaries

(-22.3176, -176.2066) and (-22.3589, -176.2075)

Geographic description (score = 2)

This site encompasses land areas of 'Ata Island (22°20'30"S 176°12'30"W) where seabirds nest, coastal waters important for foraging, and pathways for migrating humpback whales. 'Ata Island is one of the most isolated islands south of Tongatapu.

Justification (score = 3)

The area around 'Ata Island and beyond is important for seabirds and migrating humpback whales (Pers. Comm. L. Matoto, S. Tatafu). Tongan seabirds are described above for Site N 2: Tafahi Island nesting site. Humpback whales in Tongan waters are described above for Site L 4: Vava'u Waters.

'Ata Island is an Important Bird Area. The island has some of the largest seabird colonies in Tonga, especially wedgetailed shearwaters, masked, red-footed and brown boobies, and black and brown noddies. Together, these species are believed to include over 50,000 birds (BirdLife International, 2017).

Type and number of sources (score = 1)

There is peer-reviewed literature available for the attributes identified as important for the site (seabirds and humpback whales), but only a website and expert advice are available for the site itself.

Obligations (score = 3)

There are obligations to protect the habitat of seabirds and whales under the Fisheries Management Act 2002, the Environment Management Act 2010 and the Birds and Preservation Act, Cap 125. Humpback whales and some seabirds are further protected through their inclusion on the IUCN Red List and CITES. 'Ata Island is an International Bird Area. The Convention on Biological Diversity lists obligations to protect threatened species and habitats.

3.2.4.11 SITE T 11: TELEKI TONGA AND TELEKI TOKELAU REEFS

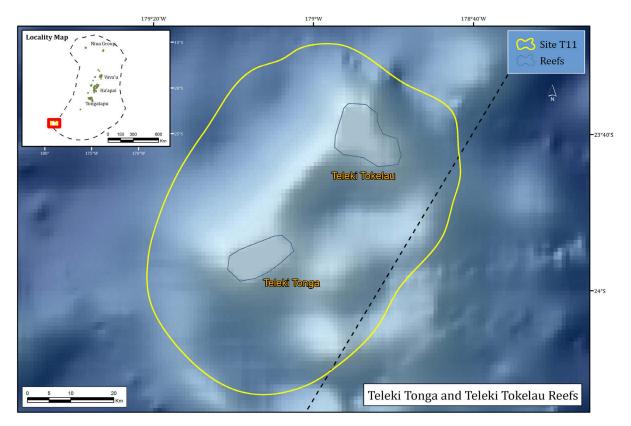


FIGURE 38. SITE T 11: Teleki Tonga and Teleki Tokelau Reefs

TABLE 39. Site T 11: Teleki Tonga and Teleki Tokelau Reefs. Overall score (based upon information below)

Geographic Cluster	Site Name	Site Code	Overall Rating
Finer scale biophysically special, unique marine sites – Tongatapu Island Group	Teleki Tonga and Teleki Tokelau Reefs	T11	10

Geographic boundaries

(-24.0266, -179.4625) and (-23.6808, -178.6015)

Geographic description (score = 3)

The site includes Teleki Tonga and Teleki Tokelau Reefs, and 12 nautical miles of surrounding ocean. They lie 435 km to the southwest of the Tongatapu group. Teleki Tonga has a diameter of \sim 5.6 km, and Teleki Tokelau has a diameter of \sim 4.8 km

Justification (score = 3)

Teleki Tonga and Teleki Tokelau are two volcanic atolls that lie outside Tonga's provisional EEZ, but have been declared Special Management Areas by Tonga (reserved for local fishing vessels only) due to their pristine coral reefs, high shark densities and healthy stocks of giant clams. Also known as the Minerva Reefs, they were proclaimed as part of Tonga in 1972 (http://extwprlegs1.fao.org/docs/pdf/ton5226.pdf).

These reefs lie just southwest of Tonga's provisional EEZ boundary and support significant shark and clam populations and relatively isolated but diverse coral reefs. The site offers a safe anchorage to passing yachts, and is also an aid to navigation (pers. comm. L. Matoto, S Tatafu, V. Matoto, F. Hakaumotu, H. Fakapelea).

Giant clams in Tonga have traditionally been harvested by the subsistence fisheries, raising concerns about overexploitation. Areas that are still rich in giant clams, such as Teleki Tonga and Teleki Tokelau, are therefore important. Four species of giant clam (*Tridacna maxima, T. squamosa, T. derasa* and *T. crocea*) are commonly found in Tonga, and it is typical to find the highest densities of giant clams on reefs more distant from population centres (Atherton et al., 2015).

The tendency for oceanic reefs to be in better condition than those closer to populations centres in Tonga is described above for Site L 3: Inshore marine areas. General information about the vulnerability and importance of top predators such as sharks is presented above for Site V 1: Southern Vava'u islands and turtle nesting sites. There was no ecological information specific to these reefs.

Type and number of sources (score = 1)

The information sources range from general peer-reviewed papers and technical reports for information about the valuable assets of the site (see above), but not for the site in particular. Only expert advice is available for the site itself.

Obligations (score = 3)

The islands have been declared as Special Management Areas by Tonga (Pers. Comm. L. Matoto, S Tatafu, V. Matoto, F. Hakaumotu, H. Fakapelea). The Special Management Area was proclaimed for 12nm from the islands (http:// extwprlegs1.fao.org/docs/pdf/ton80085.pdf). Corals and multiple species supported by coral reefs (clams, sharks) are protected under the Fisheries Management Act 2002 and Environment Management Act 2010. Sharks are afforded additional protection under the National Plan of Action for Sharks 2014–2016. Corals, sharks, giant clams and some sea cucumbers are also listed on the IUCN Red List and protected under CITES. The Convention on Biological Diversity lists obligations to protect coral reefs.

4. DISCUSSION

Sites identified by the expert workshop as special, unique marine areas were given scores between 6 and 12 (Table 40). This scoring system is mainly subjective, albeit systematic, and is designed to use as a guide for planning purposes. The final score for each site reflects the amount and type of knowledge available for that site, as well as the attributes of the site; lower-scoring sites may benefit from ground-truthing before definitive decisions are made about their protection or management. Because the highest scoring sites have a more solid information base, prioritisation of these areas during conservation or management planning across all sectors can be viewed with greater confidence. However, the scoring system is based upon information available at the time of writing and, as more information is gathered or as time goes on, the "real" score of any site may be found to be different than as reported here.

None of the large-scale sites was given the maximum score of 12 (see list of scores in Table 40). Because of their largescale and often offshore nature, the geographic boundaries of these sites were not exactly defined. A clear site boundary is important spatial planning, especially in the case of marine areas where the features to be protected are usually under the surface or determined by the movements or animals, and therefore not readily visible. However, also because of their broad-scale nature, many of the large-scale sites received high scores; their geographic span guarantees the inclusion of many smaller special, unique and important attributes and critical (spawning, breeding, aggregation or feeding) habitats of threatened species such as marine mammals, and increases the likelihood of there being reliable sources directly relevant to the site.

Among the finer-scale sites, the two highest-scoring sites (12) were Fonualei and Toku Islands and Tongatapu coral reefs (see list of scores in Table 40). This was the result of a combination of factors: they were geographically clearly defined, there was high-quality information directly relevant to the site, and the attributes of the sites were clearly special. These high-scoring sites included a combination of remote (Fonualei and Toku) and heavily populated (some of Tongatapu's coral reefs) sites. Low-scoring sites, such as Ngā'itō and Coastal Haveluliku and Fua'amotu village, were those that had been selected for a single specific organism or attribute, or those for which very little information was available. This indicates that both high and low scores are useful for management; while high-scoring sites can be prioritised with confidence, lower-scoring sites can be highlighted for needing more research or requiring protection for the purposes of ecosystem recovery, or even restoration efforts.

Because of the inherently different nature of offshore versus more nearshore sites, the significant differences in data availability and also because of the divergent management issues and management tools that would be applied inshore and offshore, these two sets of sites were not ranked against each other in Table 40. Inshore and offshore areas were not considered comparable in scoring the sites.

Many of the sites were given a special, unique status because of their remoteness. This was partly because geographic isolation often leads to unique assemblages, genetic distinctness and the presence of endemics, and/or because the remoteness itself has left their ecosystems relatively intact. For instance, Tonga has abundant coral reefs, some are heavily exploited, polluted and degraded, and others are practically pristine because of their distance from human settlements. It is the reefs further offshore that are considered more special and unique because the lack of exploitation and pollution makes them more diverse and resilient, with more abundant flora and fauna and intact food webs. Spatial planning can take this into account directly, but also in the context of connectivity, where intact coral reefs could act as sources of larvae to replenish degraded reefs; hydrodynamic modelling could help establish such linkages to further guide planning and management. Given the status of coral reefs worldwide, coral reefs identified in this report may well be special and/or unique at a global level. Similarly, when a site was considered special and unique because of the presence or high density of a certain species (e.g. octopus), it was usually due to the disappearance of this species in many other areas throughout Tonga. The presence or high density of a single or multiple species was therefore an indicator of an area or ecosystem that could be considered to be relatively undisturbed or unexploited, and therefore likely to have other positive attributes. Unfortunately, many of these finer scale sites had very little site-specific information available, and therefore received lower scores.

Future scoring systems could, more explicitly, take into account levels of human use or impact, as this affects the intrinsic ecological value of a habitat, assemblage, population or ecosystem. This intrinsic ecological value is embedded within the ability of the system to function in a balanced and sustainable manner. This includes elements of assemblage structure and diversity, nutrient cycling, trophic linkages and the abundance of keystone species. Sometimes a single

species can indicate that these processes are likely to be intact. However, in the absence of existing information, only ground-truthing can confirm the special, unique nature of a site.

The identification and scoring of special, unique marine areas can guide the next steps in marine spatial planning, but also provide a baseline of information for other management measures or EIA that may be necessary in the future at these locations. The identified sites all scored at least 6 points or above, which is not surprising, given that they all contain features that somehow distinguish them as unique or special, and all are sites / features subject to obligations at national or international level. Sites with higher scores can be seen as priority sites at a national level, while those scoring lower should be flagged for further research.

Geographic Cluster	Site Name	Site Code	Total score
Large-scale special, unique sites	Tonga Trench and Tonga Ridge	L2	10
	Inshore marine areas	L3	10
	Ha'apai High Productivity Zone	L6	10
	Vava'u waters	L7	10
	Seamounts and ridges around 'Ata Island	L1	9.5
	Hydrothermal vents	L4	9.5
	Canyons	L9	8.5
	Offshore west of Tongan islands	L5	7
	Tongatapu and 'Eua whale areas	L8	6
Finer scale special, unique sites	Fonualei and Toku Islands	V2	12
	Tongatapu coral reefs	T5	12
	Southern Vava'u islands and turtle nesting sites	V1	11
	Vava'u southern bank	V4	10.5
	Capricorn Seamount	V7	10.5
	Seisia / Nukunukumotu Island mangroves	T2	10
	Teleki Tonga and Teleki Tokelau Reefs	T11	10
	Fanga'uta Lagoon	Т3	10
	Late Island and Home Reef	V5	9.5
	West Vava'u wetlands	V6	9.5
	Ha'apai seagrass beds	H6	9.5
	Ha'apai whale areas	H7	9
	'Ata Island	T10	9
	Sopu and Hofoa wetlands	Т8	8.5
	'Uta Vava'u spawning grounds	V3	8.5
	Tafahi Island nesting site	N2	8.5
	Passage between Tongatapu and Eua	T1	8.5
	Southeast Niuatoputapu	N1	8
	Ha'apai turtle nesting sites	H1	8
	'Eueiki Island	Т9	8
	'Uiha Island	H4	7.5
	Fungafele'ave mangroves	T4	7
	Waters around 'Eua and Hakaumama'o Reef	Т6	7
	Northeastern Ha'apai	H5	6.5
	Octopus ("Octapusy")	H2	6.5
	Northern Niuatoputapu Kaloama	N3	6
	Tafahi Island coconut crab	N4	6
	Ngā'itō	H3	6
	Coastal Haveluliku and Fua'amotu Village	T7	6

TABLE 40. Summary of special, unique marine sites, in order of decreasing score. Large-scale and finer scale sites are rated separately.

5. REFERENCES

- Abesamis, R.A., Green, A.L., Russ, G.R., Jadloc, C.R.L., 2014. The intrinsic vulnerability to fishing of coral reef fishes and their differential recovery in fishery closures. Rev. Fish Biol. Fish. 24, 1033–1063.
- Adjeroud, M., Briand, M.J., Kayal, M., Dumas, P., 2013. Coral assemblages in Tonga: spatial patterns, replenishment capacities, and implications for conservation strategies. Environ. Monit. Assess. 185, 5763–5773.
- Atherton, J.N., McKenna, S.A., Wheatley, A., 2015. Rapid biodiversity assessment of the Vava'u Archipelago, Kingdom of Tonga. SPREP, Apia, Samoa.
- Bagarinao, T., 1994. Systematics, distribution, genetics and life history of milkfish, Chanos chanos. Environ. Biol. Fishes 39, 23–41.
- Baker, E., Beaudoin, Y., 2013. Deep Sea Minerals: Cobalt-rich Ferromanganese Crusts, a physical, biological, environmental, and technical review. Vol. 1C. Secretariat of the Pacific Community.
- Bauman, A.G., 2015. Marine macroinvertebrates of Vava'u, in: Atherton, J.N., McKenna, S.A., Wheatley, A. (Eds.), Rapid Biodiversity Assessment of the Vava'u Archipelago, Kingdom of Tonga. SPREP, Apia, Samoa, pp. 109–126.
- Beaulieu, S.E., Baker, E.T., German, C.R., Maffei, A., 2013. An authoritative global database for active submarine hydrothermal vent fields. Geochem. Geophys. Geosystems 14, doi: 10.1002/2013GC004998.
- BirdLife International, 2017. Important Bird Areas factsheet: 'Ata Island. Downloaded Httpwwwbirdlifeorg 15022017.
- Birdlife International, 2009. Designing networks of marine protected areas: exploring the linkages between Important Bird Areas and ecologically or biologically significant marine areas. Birdlife International, Cambridge.
- Birdlife International, 2004. Polynesian Megapode Megapodius pritchardii. Birdlife from http://www.birdlife.org/datazone/species/index.html?action=SpcHTMDetails.asp&sid=126&m=0.
- Bluhm, H., 2001. Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the sea floor. Deep Sea Res. Part Oceanogr. Res. Pap. 48, 3841–3868.
- Brown, C.J., Harborne, A.R., Paris, C.B., Mumby, P.J., 2016. Uniting paradigms of connectivity in marine ecology. Ecology 97, 2447–2457.
- Bruckner, A.W., 2014. Global Reef Expedition: Kingdom of Tonga. Field Report. Khaled bin Sultan Living Oceans Foundation, Landover MD. 28 pp.
- Bull, L.S., McConkey, K.R., Tonga, F., 2002. Abundance and breeding habitat of Noddies and White Terns on a relatively unmodified island in the Kingdom of Tonga. Emu 102, 373–376.
- Buschbaum, C., Dittman, S., Hong, J.-S., Hwang, I.-S., Strasser, M., Thiel, M., Valdivia, N., Yoon, S.-P., Reise, K., 2009. Mytilid mussels: global habitat engineers in coastal sediments. Helgol. Mar. Res. 63, 47–58.
- Carpentier, A., Como, S., Dupuy, C., Lefrançois, C., Feunteun, E., 2014. Feeding ecology of Liza spp. in a tidal flat: Evidence of the importance of primary production (biofilm) and associated meiofauna. J. Sea Res. 92, 86–91.
- CBD, 2011. Strategic Plan for Biodiversity 2011–2020 and the Aichi Targets.
- Ceccarelli, D.M., 2016. Vava'u SMA project technical report. Climate Resilience Sector Project, Tonga.
- Chabanet, P., Ralambondrainy, H., Amanieu, M., Faure, G., Galzin, R., 1997. Relationships between coral reef substrata and fish. Coral Reefs 16, 93–102.
- Chesher, R., 1995. Practical problems in coral reef utilization and management: A Tongan case study. Presented at the Proceedings of the Fifth International Coral Reef Congress, pp. 213–217.
- Chesher, R.H., 1993. Giant clam sanctuaries in the Kingdom of Tonga. Marine Studies of the University of the South Pacific Technical Report Series.
- Chin, A., De Loma, T.L., Reytar, K., Planes, S., Gerhardt, K., Clua, E., Burke, L., Wilkinson, C., 2011. Status of coral reefs of the Pacific and outlook: 2011. Global Coral Reef Monitoring Network.

- Clark, M., 2013. Oceanic and deep-sea fishery resources of the Pacific: the potential impacts of Deep Sea Mining. Presenation: 4th Regional Training Workshop, Environmental Perspectives of Deep Sea Mineral Activities. Nadi, Fiji. December 2013. http://dsm.gsd.spc.int/public/files/meetings/TrainingWorkshop4/Day2_MS1_MalcolmC.pdf Accessed 11 Jan 2017.
- Clark, M.R., Watling, L., Rowden, A.A., Guinotte, J.M., Smith, C.R., 2011. A global seamount classification to aid the scientific design of marine protected area networks. Ocean Coast. Manag. 54, 19–36. doi:10.1016/j. ocecoaman.2010.10.006
- Collette, B.B., Carpenter, K.E., Polidoro, B.A., Juan-Jorda, M.J., Boustany, A., Die, D.J., Elfes, C., Fox, W., Graves, J., Harrison, L.R., McManus, R., Minte-Vera, C.V., Nelson, R., Restrepo, V., Schratwieser, J., Sun, C.-L., Amorim, A., Brick Peres, M., Canales, C., Cardenas, G., Chang, S.-K., Chiang, W.-C., De Oliveira Leite, N.J., Harwell, H., Lessa, R., Fredou, F.L., Oxenford, H.A., Serra, R., Shao, K.-T., Sumaila, R., Wang, S.-P., Watson, R., Yanez, E., 2011. High value and long life double jeopardy for tunas and billfishes. Science 333, 291–292.
- Cooling, K., Smith, S.D.A., 2015. Population dynamics of Turbo militaris (Gastropoda: Turbinidae) on rocky shores in a subtropical marine park: implications for management. Molluscan Res. 35, 173–181.
- Crawford, W.C., Hildebrand, J.A., Dorman, L.M., Webb, S.C., Wiens, D.A., 2003. Tonga Ridge and Lau Basin crustal structure from seismic refraction data. J. Geophys. Res. Solid Earth Apr 1;108(B4).
- CSIRO, 2008. Reports from an expedition. http://www.cmar.csiro.au/publications/facts/anfc/anfc.html# Accessed 11 Jan 2017.
- Damlamian, H., 2008. Hydrodynamic Model of Fanga'uta lagoon, Tonga: Water Circulation and Applications. Pacific Islands Applied Geoscience Division, Suva, Fiji.
- De Leo, F.C., Smith, C.R., Rowden, A.A., Bowden, D.A., Clark, M.R., 2010. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea. Proc. R. Soc. B Biol. Sci. 277, 2783–2792.
- Department of Environment, 2006. National Biodiversity Strategy and Action Plan. Department of Environment, Nuku'alofa, Kingdom of Tonga.
- Dobbs, K., Fernandes, L., Slegers, S., Jago, B., Thompson, L., Hall, J., Day, J., Cameron, D., Tanzer, J., MacDonald, F., Limpus, C., 2007. Incorporating marine turtle habitat into the marine protected areas design for the Great Barrier Reef Marine Park, Queensland, Australia. Pac. Conserv. Biol. 13, 293–302.
- Domeier, M.L., Colin, P.L., 1997. Tropical reef fish spawning aggregations: defined and reviewed. Bull. Mar. Sci. 60, 698–726.
- Drew, M.M., Harzsch, S., Stensmyr, M., Erland, S., Hansson, B.S., 2010. A review of the biology and ecology of the Robber Crab, Birgus latro (Linnaeus, 1767) (Anomura: Coenobitidae). Zool. Anz. 249, 45–67.
- Ellison, J.C., 2009. Wetlands of the Pacific Island region. Wetl. Ecol. Manag. 17, 169-206.
- Emery, T.J., Hartmann, K., Gardner, C., 2016. Management issues and options for small scale holobenthic octopus fisheries. Ocean Coast. Manag. 120, 180–188.
- Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., Carpenter, S.R., Essington, T.E., Holt, R.D., Jackson, J.B.C., Marquis, R.J., Oksanen, L., Oksanen, T., Paine, R.T., Pikitch, E.K., Ripple, W.J., Sandin, S.A., Scheffer, M., Schoener, T.W., Shurin, J.B., Sinclair, A.R.E., Soule, M.E., Virtanen, R., Wardle, D.A., 2011. Trophic downgrading of planet earth. Science 333, 301–306.
- Fa'anunu, U., Kimura, T., 1995. Biological survey and management of mullet resource in Tonga. Fish. Res. Bull. Tonga 4, 37–45.
- Fenner, D., 2015. Stony reef corals of Vava'u, in: Atherton, J.N., McKenna, S.A., Wheatley, A. (Eds.), Rapid Biodiversity Assessment of the Vava'u Archipelago, Kingdom of Tonga. SPREP, Apia, Samoa, pp. 93–108.
- Ferrigno, F., Bianchi, C.N., Lasagna, R., Morri, C., Russo, G.F., Sandulli, R., 2016. Corals in high diversity reefs resist human impact. Ecol. Indic. 70, 106–113.
- Foley, B.J., Long, M.D., 2011. Upper and mid-mantle anisotropy beneath the Tonga slab. Geophys. Res. Lett. 38, L02303, doi:10.1029/2010GL046021.
- Friedlander, A.M., DeMartini, E.E., 2002. Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian Islands: the effects of fishing down apex predators. Mar. Ecol. Prog. Ser. 230, 253–264.
- Friedman, K., Pinca, S., Kronen, M., Boblin, P., Chapman, L., Magron, F., Vunisea, A., Labrosse, P., 2009. Tonga country report: Profiles and results from survey work at Ha'atafu, Manuka, Koulo and Lofanga. Secretariat of the Pacific Community, Noumea Cedex, New Caledonia.

Froese, R., Pauly, D., 2016. FishBase. World Wide Web electronic publication. www.fishbase.org, version (10/ 2016).

- Garland, E.C., Goldizen, A.W., Lilley, M.S., Rekdahl, M.L., Garrigue, C., Constantine, R., Hauser, N.D., Poole, M.M., Robbins, J., Noad, M.J., 2015. Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations. Conserv. Biol. 29, 1198–1207.
- Garrigue, C., Clapham, P.J., Geyer, Y., Kennedy, A.S., Zerbini, A.N., 2015. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales. R. Soc. Open Sci. 2, 150489. doi:10.1098/rsos.150489
- Garrigue, C., Zerbini, A.N., Geyer, Y., Heide-Jørgensen, M.-P., Hanaoka, W., Clapham, P., 2010. Movements of satellitemonitored humpback whales from New Caledonia. J. Mammal. 91, 109–115.
- Geocare & Petroleum Consult Ltd, 2010. Fourth Report: Review of Tonga National Biodiversity Strategy and Action Plan. Biodiversity Division, Ministry of Environment & Climate Change, Nuku'alofa, Tonga.
- Gollner, S., Govenar, B., Fisher, C.R., Bright, M., 2015. Size matters at deep-sea hydrothermal vents: different diversity and habitat fidelity patterns of meio- and macrofauna. Mar. Ecol. Prog. Ser. 520, 57–66.
- Graham, N.A.J., Jennings, S., MacNeil, M.A., Mouillot, D., Wilson, S.K., 2015. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97.
- Graham, N.A.J., Spalding, M.D., Sheppard, C.R.C., 2010. Reef shark declines in remote atolls highlight the need for multi-fac- eted conservation action. Aquat. Conserv. 20, 543–548.
- Guannei, G., Arkema, K., Ruggiero, P., Verutes, G., 2016. The power of three: coral reefs, seagrasses and mangroves protect coastal regions and increase their resilience. PLoS ONE 11, e0158094. doi:10.1371/journal.pone.0158094.
- Halafihi, T., 2015. Ecology and biology of Etelis coruscans and Pristipomoides filamentosus: case study of the Tonga deep-water bottomfish fishery (PhD Thesis). University of Canterbury, New Zealand. 239pp.
- Harris, P.T., Macmillan-Lawler, M., Rupp, J., Baker, E.K., 2014. Geomorphology of the Oceans. Mar. Geol. 352, 4–24. doi:10.1016/j.margeo.2014.01.011
- Harris, P.T., Whiteway, T., 2011. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol. 285, 69–86. doi:10.1016/j.margeo.2011.05.008
- Havea, S., MacKay, K.T., 2009. Marine turtle hunting in the Ha'apai Group, Tonga. Mar. Turt. Newsl. 123, 15–17.
- Hawkes, J.A., Rossel, P.E., Stubbins, A., Koschinsky, A., Chavagnac, V., Hansen, C.T., Bach, W., Dittmar, T., 2015. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation. Nat. Geosci. 8, 856–860.
- Hisano, M., Connolly, S.R., Robbins, W.D., 2011. Population growth rates of reef sharks with and without fishing on the Great Barrier Reef: robust estimation with multiple models. PLoS ONE 6, e25028. doi:10.1371/journal.pone.0025028.
- Hobbs, J.-P.A., van Herwerden, L., Jerry, D.R., Jones, G.P., Munday, P.L., 2013. High genetic diversity in geographically remote populations of endemic and widespread coral reef angelfishes (genus: Centropyge). Diversity 5, 39–50.
- Holbrook, S.J., Schmitt, R.J., Adam, T.C., Brooks, A.J., 2016. Coral reef resilience, tipping points and the strength of herbivory. Sci. Rep. 6:35817 | DOI: 10.1038/srep35817.
- Holthus, P., 1996. Coral reef survey of Vava'u, Kingdom of Tonga. SPREP, Apia, Samoa.
- Hughes, T.P., Bellwood, D.R., Connolly, S.R., 2002. Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecol. Lett. 5, 775–784.
- Huvenne, V.A.I., Tyler, P.A., Masson, D.G., Fisher, E.H., Hauton, C., Hühnerbach, V., Le Bas, T.P., Wolff, G.A., 2011. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyons. PLoS ONE 6, e28755. doi:10.1371/journal.pone.0028755.
- IHO, 2008a. Standardization of Undersea Feature Names: Guidelines Proposal form Terminology.
- IHO, 2008b. Standardization of undersea feature names: guidelines proposal for terminology. International Hydrographic Organisation and Intergovernmental Oceanographic Commission. Bathymetric Publication No. 6., Monaco.
- Imirizaldu, M., 2015. Targeted fish of Vava'u, in: Atherton, J.N., McKenna, S.A., Wheatley, A. (Eds.), Rapid Biodiversity Assessment of the Vava'u Archipelago, Kingdom of Tonga. SPREP, Apia, Samoa, pp. 145–178.
- ISA, 1999. Deep-seabed polymetallic nodule exploration: Development of environmental guidelines. International Seabed Authority, Kingston, Jamaica.

- IUCN, 2016. The IUCN Red List of Threatened Species. Version 2016-3. http://www.iucnredlist.org. Downloaded on 07 December 2016. The International Union for the Conservation of Nature, Gland, Switzerland.
- Izumi, M., Basco, J.E., 2014. Community-based milkfish farming in the Kingdom of Tonga. FAO Aquaculture Newsletter, Vol. 52, Rome.
- Jamieson, A.J., 2015. The hadal zone: life in the deepest oceans. Cambridge University Press, Cambridge.
- Jamieson, A.J., 2011. Ecology of Deep Oceans: Hadal Trenches. Encyclopedia of Life Sciences.
- Kaneko, T., Maejima, Y., Teishima, A., 1997. The abundance and vertical distribution of abyssal benthic fauna in the Japan Deep-Sea Impact Experiment. Presented at the The Seventh International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA.
- Kaschner, K., Kesner-Reyes, K., Garilao, C., Rius-Barile, J., Rees, T., Froese, R., 2016. AquaMaps: Predicted range maps for aquatic species. World wide web electronic publication, www.aquamaps.org, Version 08/2016.
- Kessler, M., Harcourt, R., 2012. Management implications for the changing interactions between people and whales in Ha'apai, Tonga. Mar. Policy 36, 440–445.
- Kessler, M., Harcourt, R., Heller, G., 2013. Swimming with whales in Tonga: Sustainable use or threatening process? Mar. Policy 39, 314–316.
- Klose, J., Polz, M.F., Wagner, M., Schimak, M.P., Gollner, S., Bright, S., 2015. Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population. Proc. Natl. Acad. Sci. U. S. A. 112, 11300–11305.
- Kolasinski, J., Frouin, P., Sallon, A., Rogers, K., Bruggemann, H.J., Potier, M., 2009. Feeding ecology and ontogenetic dietary shift of yellowstripe goatfish Mulloidichthys flavolineatus (Mullidae) at Reunion Island, SW Indian Ocean. Mar. Ecol. Prog. Ser. 386, 181–195.
- Kulbicki, M., 2004. Ecology, in: Kronen, M. (Ed.), DemEcoFish MacArthur Foundation Grant Number 00-65436. SPC Technical Report 44-115 +Annexe I-IX. SPC, Noumea, New Caledonia.
- Kulbicki, M., Bozec, Y.M., 2005. The use of butterflyfish (Chaetodontidae) species richness as a proxy of total species richness of reef fish assemblages in the Western and Central Pacific. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, S127–S141.
- Kustanowicha, S., 1962. Foraminiferal fauna from Capricorn Seamount, southwest equatorial Pacific. J. Geol. Geophys. 5, 427–434.
- Lacey, N.C., Rowden, A.A., Clark, M.R., Kilgallen, N.M., Mayor, D.J., Jamieson, A.J., 2016. Community structure and diversity of scavenging amphipods from bathyal to hadal depths in three South Pacific Trenches. Deep Sea Res. Part Oceanogr. Res. Pap. 111, 121–137.
- Lavery, S., Moritz, C., Fielder, D.R., 1996. Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Mol. Ecol. 5, 557–570.
- Lindsay, R.E., Constantine, R., Robbins, J., Tagarino, A., Dennis, T.E., 2016. Characterising essential breeding habitat for whales informs the development of large-scale Marine Protected Areas in the South Pacific. Mar. Ecol. Prog. Ser. 548, 263–275.
- Little, C.T.S., Vrijenhoek, R.C., 2003. Are hydrothermal vent animals living fossils? Trends Ecol. Evol. 18, 582–588.
- Lovell, E.R., McLardy, C., 2008. Annotated checklist of the CITES-listed corals of Fiji with reference to Vanuatu, Tonga, Samoa and American Samoa. JNCC report, No. 415.
- Lovell, E.R., Palaki, A., 2000. National coral reef status report Tonga. Presented at the Coral reefs in the Pacific: Status and monitoring, Resources and management, pp. 303–328.
- Luschi, L., 2013. Long-distance animal migrations in the oceanic environment: orientation and navigation correlates. Int. Sch. Res. Not. Zool. Artic. ID 631839 23 Pages 2013 Doi1011552013631839.
- MAFFF, 2015. Annual report to the Commission Part 1: Information on fisheries, research and statistics. Western and Central Pacific Fisheries Commission, Kingdom of Tonga.
- MAFFF, 2011. Coastal Community Management Plan: Nomuka, Mu'omu'a District, Ha'apai. Ministry of Agriculture & Food, Forests and Fisheries, Nuku'alofa, Kingdom of Tonga.
- MAFFF, 2008a. Coastal Community Management Plan for Felemea, Vahe 'Uiha, Ha'apai. Ministry of Agriculture, Food, Forestry and Fisheries, Fisheries Division, Kingdom of Tonga.

- MAFFF, 2008b. Coastal Community Management Plan for 'Eueiki, Lapaha District, Tongatapu. Ministry of Agriculture, Food, Forestry and Fisheries, Fisheries Division, Kingdom of Tonga.
- Magalon, H., Adjeroud, M., Veuille, M., 2005. Patterns of genetic variation do not correlate with geographical distance in the reef-building coral Pocillopora meandrina in the South Pacific. Mol. Ecol. 14, 1861–1868.
- Malimali, S., Makasini, M., Hing, M., Mailau, S., Loto'ahea, T., Kava, V., Matoto, S.V., 2010. Report on baseline survey of inshore marine fisheries resources of Nomuka Island. Ministry of Environment and Climate Change, Fisheries Division, Nuku'alofa, Tonga.
- Mannocci, L., Monestiez, P., Spitz, J., Ridoux, V., 2015. Extrapolating cetacean densities beyond surveyed regions: habitat-based predictions in the circumtropical belt. J. Biogeogr. 42, 1267–1280.
- Marchese, C., 2014. Biodiversity hotspots: A shortcut for a more complicated concept. Global Ecology and Conservation. Glob. Ecol. Conserv. 3, 297–309.
- McDevitt-Irwin, J.M., Iacarella, J.C., Baum, J.K., 2016. Reassessing the nursery role of seagrass habitats from temperate to tropical regions: a meta-analysis. Mar. Ecol. Prog. Ser. 557, 133–143.
- McKoy, J.L., 1980. Biology, exploitation and management of giant clams (Tridacnidae) in the Kingdom of Tonga. Fish. Bull.
- McLean, M., Cuentos-Bueno, J., Nedlic, O., Luckymiss, M., Houk, P., 2016. Local stressors, resilience, and shifting baselines on coral reefs. PLoS ONE 11, e0166319. doi:10.1371/journal. pone.0166319.
- MESCAL, 2013. Review of Policy and Legislation Relating to Mangroves, the Use and Management of Mangroves in Tonga. Mangrove Ecosystems for Cimate Change Adaptation and Livelihoods, Tonga.
- Ministry of Lands, Environment, Climate Change and Natural Resources, 2014. Review of Tonga's National Biodiversity Strategy and Action Plan Fifth Report. Government of Tonga, Nuku'alofa, Kingdom of Tonga.
- Monticelli, D., Ramos, J.A., Tavares, P.C., Bataille, B., Lepoint, G., Devillers, P., 2008. Diet and foraging ecology of roseate terns and lesser noddies breeding sympatrically on Aride Island, Seychelles. Waterbirds Int. J. Waterbird Biol. 31, 231–240.
- Morato, T., Clark, M.R., 2007. Seamount fishes: ecology and life histories. In T. J. Pitcher et al., eds. Seamounts: ecology, fisheries and conservation: Blackwell Fisheries and Aquatic Resources Series, 12. Oxford: Blackwell Publishing, pp. 170–188.
- Morato, T., Hoyle, S.D., Allain, V., Nicol, S.J., 2010. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc. Natl. Acad. Sci. 107, 9707–9711.
- Mumby, P.J., Dahlgren, C.P., Harborne, A.R., Kappel, C.V., Micheli, F., Brumbaugh, D.R., Holmes, K.E., Mendes, J.M., Broad, K., Sanchirico, J.N., Buch, K., Box, S., Stoffle, R.W., Gill, A.B., 2006. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101.
- Myers, R.A., Worm, B., 2003. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283.
- Ngaluafe, P.V., 2007. The reproduction biology of sea cucumbers in Tonga (PhD Thesis). Otago University, Dunedin, New Zealand.
- NOAA, 2016. National Ocean Service http://oceanservice.noaa.gov/facts/vents.html Accessed 10/01/17.
- Norlund, L.M., Koch, E.W., Barbier, E.B., Creed, J.C., 2016. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 11, e0163091. doi:10.1371/journal.pone.0163091.
- Okamoto, K., 1984. Beche-de-mer (sea cucumber) stock survey: Report 2. Tonga Fisheries Division, Nuku'alofa.
- Olds, A.D., Connolly, R.M., Pitt, K.A., Pittman, S.J., Maxwell, P.S., Huijbers, C.M., Moore, B.R., Albert, S., Rissik, D., Babcock, R.C., Schlacher, T.A., 2016. Quantifying the conservation value of seascape connectivity: a global synthesis The conservation value of seascape connectivity. Glob. Ecol. Biogeogr. 25, 3–15.
- Pagad, S.N., 2013. Comprehensive Desk-top Review of Biodiversity, Conservation and Invasive Species Information for the Kingdom of Tonga. SPREP, Apia, Samoa.
- Paine, J.R., 1991. IUCN directory of protected areas in Oceania. <u>https://portals.iucn.org/library/sites/library/files/styles/</u> publication/public/book_covers/BC-1991-Pain-001.jpg.
- Pakoa, K.M., Ngaluafe, P.V., Lotoahea, T., Matoto, S.V., I., B., 2013. The status of Tonga's sea cucumber fishery, including an update on Vava'u and Tongatapu. Secretariat of the Pacific Community (SPC), Noumea, New Caledonia.

- Palaki, A., Nakaya, S., Kimura, T., 2007. Management Plan for Marine Protected Areas in the Kingdom of Tonga. Department of Environment, Tonga.
- Passfield, K., Gilman, E., 2010. Effects of Pelagic Longline Fishing on Seamount Ecosystems Based on Interviews with Pacific Island Fishers. International Union for the Conservation of Nature, Oceania Regional Office, Suva, Fiji.
- Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres, F.J., 1998. Fishing down marine food webs. Science 279, 860–863.
- Pierce, G.J., Valavanis, V.D., Guerra, A., Jereb, P., Orsi-Relini, L., Bellido, J.M., Katara, I., Piatkowski, U., Pereiras, J., Balguerias, E., Sobrino, I., Lefkaditou, E., Wang, J., Santurtun, M., Boyle, P.R., Hsstie, L.C., MacLeod, C.D., Smith, J.M., Viana, M., Gonzalez, A.F., Zuur, A.F., 2008. A review of cephalopond-environment interactions in European Seas. Hydrobiologia 612, 49–70.
- Prescott, N., Kaly, U., Taufa, P., Matoto, L., Lepa, S.Y., Faletau, T., Palaki, 'Aispeli, 2012. Environmental Management Plan for Fanga'uta Lagoon System. Kingdom of Tonga.
- Punt, A.E., Su, N.-J., Sun, C.-L., 2015. Assessing billfish stocks: A review of current methods and some future directions. Fish. Res. 166, 103–118.
- Quetglas, A., Rueda, L., Alvarez-Berastegui, D., Guijarro, B., Massuti, E., 2016. Contrasting responses to harvesting and environmental drivers of fast and slow life history species. PLoS ONE DOI:10.1371/journal.pone.0148770.
- Raitt, R.W., Fisher, R.L., Mason, R.G., 1955. Tonga Trench. GSA Spec. Pap. 62, 237–254.
- Randall, J.E., Williams, J.T., Smith, D.G., Kulbicki, M., Mou Tham, G., Labrosse, P., Kronen, M., Clua, E., Mann, B.S., 2003. Checklist of the shore and epipelagic fishes of Tonga. Atoll Res. Bull. 502, 1–35.
- Richer de Forges, B., Koslow, J.A., Poore, G.C.B., 2000. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947.
- Romanov, E.V., Chassot, E., 2017. Is skipjack tuna the fastest-growing teleost fish on earth? Environ. Biol. Fishes 100, 85–88.
- Russ, G.R., Bergseth, B.J., Rizzari, J.R., Alcala, A.C., 2015. Decadal-scale effects of benthic habitat and marine reserve protection on Philippine goatfish (F: Mullidae). Coral Reefs 34, 773–787.
- Sandin, S.A., Smith, J.E., DeMartini, E.E., Dinsdale, E.A., Donner, S.D., Friedlander, A.M., Konotchick, T., Malay, M., Maragos, J.E., Obura, D., Pantos, O., Paulay, G., Richie, M., Rohwer, F., Schroeder, R.E., Walsh, S., Jackson, J.B.C., Knowlton, N., Sala, E., 2008. Baselines and degradation of coral reefs in the northern Line Islands. PLoS ONE 3, doi:10.1371/journal. pone.0001548.
- Secretariat of the Convention on Biological Diversity, 2014. Ecologically or Biologically Significant Marine Areas (EBSAs). Special places in the world's oceans. Volume 1: Western South Pacific Region. Secretariat of the Convention on Biological Diversity.
- Sheaves, M., Johnston, R., Baker, R., 2016. Use of mangroves by fish: new insights from in-forest videos. Mar. Ecol. Prog. Ser. 549, 167–182.
- Shephard, F., 1964. Submarine Geology, 2nd ed. New York.
- Steadman, D.W., Freifeld, H.B., 1999. Distribution, relative abundance, and habitat relationships of landbirds in the Vava'u Group, Kingdom of Tonga. The Condor 100, 609–628.
- Stevens, J.D., Bonfil, R., Dulvy, N.K., Walker, P.A., 2000. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci. 57, 476–494.
- Stone, G.S., Madin, L.P., Stocks, K., Hovermale, G., Hoagland, P., Scumacher, M., Etnoyer, P., Sotka, C., Tausig, H., 2004. Chapter 2. Seamount biodiversity, exploitation and conservation, in: Defy Ocean's End. Island Press, Washington D.C.
- Stone, K., 2015. Coral reef fish of Vava'u, in: Atherton, J.N., McKenna, S.A., Wheatley, A. (Eds.), Rapid Biodiversity Assessment of the Vava'u Archipelago, Kingdom of Tonga. SPREP, Apia, Samoa, pp. 127–144.
- Surman, C.A., Wooller, R.D., 2003. Comparative foraging ecology of five sympatric terns at a sub-tropical island in the eastern Indian Ocean. J. Zool. 259, 219–230.
- Thaman, R.R., Gillet, R.D., Faka'osi, S., 1997. Ha'apai Conservation Area biodiversity survey and Community-based Biodiversity Conservation Action Plan. Report to the South Pacific Biodiversity Conservation Program, SPREP: Apia.

- Thiel, H., Schriever, G., Ahnert, A., Bluhm, H., Borowski, C., Vopel, K., 2001. The large-scale environmental impact experiment DISCOL— reflection and foresight. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 3869–3882.
- Tonga Fisheries Division & Pacific Islands Forum Fisheries Agency, 2013. Shark-Plan (2014–2016). Kingdom of Tonga: Nuku'alofa.
- Tyler, P.A., Amaro, T., Arzola, R., Cunha, M.R., de Stigter, H., Gooday, A.J., Huvenne, V.A.I., Ingels, J., Kiriakoulakis, K., Lastras, G., Masson, D., Oliveira, A., Pattenden, A., Vanreusel, A., van Weering, T.C.E., Vitorino, J., Witte, U., Wolff, G.A., 2009. Europe's Grand Canyon: Nazaré submarine canyon. Oceanography 22, 46–57.
- Uiblein, F., 2007. Goatfishes (Mullidae) as indicators in tropical and temperate coastal habitat monitoring and management. Mar. Biol. Res. 3, 275–288.
- UNDP, Government of Tonga, 2014. Integrated Environmental Management of the Fanga'uta Lagoon Catchment. Government of Tonga and United Nations Development Programme.
- UNEP-WCMC, 2015. Review of corals from Fiji, Haiti, Solomon Islands and Tonga (coral species subject to EU decisions where identification to genus level is acceptable for trade purposes). UNEP-WCMC, Cambridge.
- Vava'u Turtle Monitoring Program, 2013. Nesting Survey Report November 2012- January 2013. Vava'u Turtle Monitoring Program.
- Vetter, E.W., Dayton, P.K., 1998. Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep Sea Res. Part II Top. Stud. Oceanogr. 45, 25–54. doi:10.1016/S0967-0645(97)00048-9
- Vetter, E.W., Smith, C.R., De Leo, F.C., 2010. Hawaiian hotspots: enhanced megafaunal abundance and diversity in submarine canyons on the oceanic islands of Hawaii. Mar. Ecol. 31, 183–199.
- Vrijenhoek, R.C., 1997. Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. J. Hered. 88, 85–293.
- Webster, F., 2015. Reef condition of Vava'u, in: Atherton, J.N., McKenna, S.A., Wheatley, A. (Eds.), Rapid Biodiversity Assessment of the Vava'u Archipelago, Kingdom of Tonga. SPREP, Apia, Samoa.
- Webster, F., 2013. Analysis of Special Management Area (SMA) community data. Ministry of Agriculture, Forestry and Fisheries, Department of Fisheries, Community Management Section, Nuku'alofa, Tonga.
- Whitehad, H., 2002. Estimates of the current global population size and historical trajectory for sperm whales. Mar. Ecol. Prog. Ser. 242, 295–304.
- Williams, P.G., Bigelow, K.A., 1998. Estimates of longline billfish catch in the Western and Central Pacific Ocean. Oceanic Fisheries Programme, South Pacific Commission, Noumea, New Caledonia.
- Wilson, E.G., Miller, K.L., Allison, D., Magliocca, M., 2006. Why healthy oceans need sea turtles. Oceana. http://oceana.org/sites/default/files/reports/Why_Healthy_Oceans_ Need_Sea_Turtles.pdf (Accessed 14/8/17)
- Yen, K.-W., Lu, H.-J., 2016. Spatial-temporal variations in primary productivity and population dynamics of skipjack tuna Katsuwonus pelamis in the western and central Pacific Ocean. Fish. Sci. 82, 563–571.

6. APPENDICES

APPENDIX 1 BIOPHYSICAL DATA AVAILABLE DURING THE WORKSHOP

LIST OF BIODIVERSITY MAPS AVAILABLE IN HARDCOPY

- Tonga BaseMap EEZ (including Coastlines and Bathymetry)
- Tonga Mangroves, Reefs, Seagrass
- Tonga Geomorphology EEZ
- Tonga Hydrothermal Vents EEZ
- Tonga Seamount Classification EEZ
- Tonga Seamounts Productivity EEZ
- Tonga Managed Areas ZOOM
- Tonga Ecologically and Biologically Significant Areas and Important Biodiversity Areas EEZ
- Tonga Aquamaps All EEZ (Kaschner et al., 2016)
- Tonga Aquamaps Benthic EEZ (Kaschner et al., 2016)
- Tonga Aquamaps Pelagic EEZ (Kaschner et al., 2016)
- Tonga ColdWater Coral EEZ
- Tonga Number Coral Species EEZ
- Tonga Vertically Generalised Production Model EEZ
- Tonga Chlorophyll A EEZ
- Tonga SST EEZ
- Tonga Currents EEZ

LIST OF BIODIVERSITY AND OTHER DATA AVAILABLE IN GIS

- All of the above
- Tonga Underwater Feature Names
- Tonga Depth of 20 Degree Isotherm EEZ
- Tonga Mixed Layer Depth EEZ
- Tonga Salinity EEZ
- Tonga pH EEZ
- Tonga Photosynthetically Available Radiation EEZ
- Tonga Nitrate EEZ
- Tonga Calcite EEZ
- Tonga Silicate EEZ
- Tonga Phosphate EEZ
- Tonga Particulate Organic Carbon Flux EEZ
- Tonga Reefs at Risk EEZ
- Tonga Historic Tsunami Location EEZ
- Tonga Upwelling EEZ
- Tonga Ocean Productivity EEZ
- Tonga Cyclone Tracks EEZ

The data sources are listed and thanked in the Acknowledgements of this report.

APPENDIX 2 LIST OF WORKSHOP PARTICIPANTS AND SOURCES OF ADDITIONAL DATA FROM NON-PARTICIPANTS

NAMES	ORGANISATION	EMAIL ADDRESS
1.Tukua Tonga	NSPAO (PUMA)	tukuatonga@gmail.com
2.Maka Matekitonga	NSPAO (PUMA)	stonekaufaki@gmail.com
3.Rosamond Bing	Ministry of Lands and Natural Resources (MLNR)	Rosamond.bing@gmail.com
4.Samuela Tatafu	Deep Blue Diving	samtatafu@gmail.com
5. Teisina Fuko	TNFC	fukofishing@gmail.com
6. Dr. Vailala Matoto	ADB- Climate Change	vailalam@yahoo.com
7. Dr. Tu'ikolongahau Halafihi	Fisheries Dept.	sup164t@gmail.com
8. Sosefina Vili	Ha'apai Fisheries Div.	sosefinavili@gmail.com
9. Teisa Fifita	Department of Tourism	teisaf@tongatourism.gov.to
10. Simata-e-la'ā V. Palu	Department of Tourism	ungateapalu@tongatourism.gov.to
11.Taaniela Kula	MLNR	tkula@naturalresources.gov.to
12.Lopeti Tufui	MLNR	ttufui@naturalresources.gov.to
13.Mafile'o Masi	DOE	mafileo.masi@gmail.com
14.Kosilio Faka'osi	DOE	kosiliofakaosi@gmail.com
15.Karen Stone	VEPA	info@vavauenvironment.org
16.Dorothy Foliaki	DOE	eritakwan@gmail.com
17.Cadinia Funganitao	MLNR	cdfunganitao@naturalresources.gov.to
18. 'Asipeli Palaki	MLNR	apalaki@gmail.com
19. Lupe Matoto	DOE	lupematoto@gmail.com
20. Peti Veikoso	PUMA/NSPAO	veikosopeti@gmail.com
21. Tevita. L. Fotu	PUMA/NSPAO	tevita.fotu@yahoo.com
22. 'Atunaisa Fetokai	PUMA/NSPAO	atunaisaf@hotmail.com
23.Eileen Fonua	DOE (MACBIO)	eileenfonua@gmail.com
24. Hakaumotu Fakapelea	Ports Authority	hakaumotuf@portsauthoritytonga.com
25. Hans Wendt	МАСВЮ	Hans.wendt@iucn.org
26. Jonah Sullivan	MACBIO	Jonah.sullivan@iucn.org
27. Dr. Leanne Fernandes	МАСВЮ	leannefernandes@iucn.org

APPENDIX 3

AGENDA FOR WORKSHOP ON BIOPHYSICALLY SPECIAL, UNIQUE MARINE AREAS IN TONGA

AGENDA

EXPERT MEETING ON PRIORITY BIODIVERSITY AREAS OF TONGA

VENUE: ENVIRONMENT DEPARTMENT CONFERENCE ROOM

DATE: 18 MAY 2016

ТІМЕ: 2:00рм--4:30рм

TIME	ACTIVITIES	PRESENTERS
2:00рм	Opening Prayer	
2:05рм	Welcome Remarks	ASIPELI PALAKI (CEO, Lands and Natural Resouces)
2:10рм	Introductions of the participants	ALL
2:15рм	Background on MSP in Tonga and how this workshop outputs will contribute (10 min)	LUPE MATOTO (Director, Environment)
	Presentation on existing data (coral reefs, mangroves, bathymetry, geomorphology, EBSA, species richness, productivity, important bird areas)(15 min)	HANS WENDT/JONAH SULLIVAN (MACBIO Project)
2:40рм	Assessment of important biodiversity areas: Tongatapu Island Group: inshore & offshore (~20 m) Ha'apai Island Group: inshore & offshore (~20m) Vava'u Island Group: inshore & offshore (~20m) Niuatoputapu Island Gp: inshore & offshore (~20m) Southern part of Tonga (around Ata & beyond): offshore (~20m)	
4:20рм	Next steps	LUPE MATOTO/LEANNE FERNANDES (MACBIO)
4:25рм	Closing remarks	ASIPELI PALAKI (CEO, Lands and Natural Resouces)
4:30рм	Closing Prayer	

APPENDIX 4 WORKSHOP SITE RESPONSE SHEET AND MAPS PROVIDED FOR PARTICIPANTS TO DRAW SITES UPON

1. RESPONSE SHEET FOR USE PER SITE

Tonga Biodiversity Priorities Workshop - Worksheet

18 MAY 2016	
Group:	Site number:
Site name:	
Location/ geographic description:	
Justification:	
Sources:	
Any legal obligations:	
Follow-ups:	

2. LIST OF MAPS TO DRAW SITES UPON

- Niuatoputapu Island Group Inshore
- Niuatoputapu Island Group Offshore
- Vava'u Island Group Inshore
- Vava'u Island Group Offshore
- Ha'apai Island Group Inshore
- Ha'apai Island Group Offshore
- Tongatapu Island Group Inshore
- Tongatapu Island Group Offshore
- Southern part of Tonga (around Ata & beyond) Inshore
- Southern part of Tonga (around Ata & beyond) Offshore

APPENDIX 5 LIST OF SPECIES KNOWN TO OCCUR IN TONGA WITH INTERNATIONAL AND NATIONAL OBLIGATIONS.

The species list was generated through a country- and region-specific search of Species + (www.speciesplus.net) and the IUCN Red List (www.iucnredlist.org). This table was used to verify the obligations for each site, where particular species were known to occur at the site. CITES: The Convention on International Trade in Endangered Species of Wild Fauna and Flora; CMS: Convention on Migratory Species; IUCN: International Union for the Conservation of Nature; NPOA: National Plan of Action; UNCLOS: United Nations Convention on the Law of the Sea; DD: Data Deficient; LC: Least Concern; NT: Near Threatened; VU: Vulnerable; EN: Endangered.

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Albatross	Diomedea exulans	Wandering albatross	11		VU	128000000	yes		
Alfonsino	Beryx splendens	Alfonsino			LC	circumglobal	no		
Angelfish	Centropyge bicolor	Bicolor angelfish			LC	Indo-west Pacific	no		
Angelfish	Centropyge bispinosus	Two-spined angelfish			LC	Indo-Pacific	no		
Angelfish	Centropyge fisheri	Fisher's angelfish			LC	Indo-west Pacific, Pacific	no		
Angelfish	Centropyge flavissima	Lemonpeel angelfish			LC	Central Pacific	no		
Angelfish	Centropyge heraldi	Herald's angelfish			LC	Indo-west Pacific, Pacific	no		
Angelfish	Centropyge loricula	Flame angelfish			LC	Indo-west Pacific, Pacific	no		
Angelfish	Centropyge tibicen	Keyhole angelfish			LC	Indo-Pacific	no		
Angelfish	Centropyge vrolikii	Pearl-scaled angelfish			LC	Indo-west Pacific, Pacific	no		
Angelfish	Pomacanthus imperator	Emperor angelfish			LC	Indian Ocean, Indo- Pacific	no		
Angelfish	Pomacanthus semicirculatus	Semicircle angelfish			LC	Indian Ocean, Indo- Pacific	no		
Angelfish	Pygoplites diacanthus	Bluebanded angelfish			LC	Indo-west Pacific	no		
Anglerfish	Ceratias holboelli	Deepsea angler			LC	circumglobal, deep	no	-	
Anglerfish	Chaenophryne draco	Anglerfish			LC	circumglobal, deep	no		
Anglerfish	Chaenophryne ramifera	Anglerfish			LC	widespread, deep	no		
Anglerfish	Cryptopsaras couesii	Warty seadevil	1		LC	circumglobal, deep	no	-	
Anglerfish	Histrio histrio	Sargassum anglerfish			LC	circumtropical	no	-	
Anglerfish	Microlophichthys microlophus	Anglerfish			LC	widespread, deep	no		
Anglerfish	Oneirodes eschrichtii	Bulbous dreamer			LC	circumglobal, deep	no		
Anthias	Pseudanthias cooperi	Redbar anthias			LC	Indian Ocean, Indo- Pacific	no		
Anthias	Pseudanthias gibbosus	Anthias			LC	Indo-Pacific	no		
Anthias	Pseudanthias hypselosoma	Stocky anthias	3		LC	Indo-Pacific	no		
Anthias	Pseudanthias pictilis	Painted anthias			LC	restricted	no		
Anthias	Pseudanthias squamipinnis	Lyretail anthias			LC	Indo-west Pacific	no		
Barracuda	Sphyraena barracuda	Great barracuda			LC	circumtropical	no		
Barracudina	Arctozenus risso	Spotted barracudina			LC	widespread, deep	no		
Barracudina	Lestrolepis intermedia	Barracudina			LC	circumglobal, deep	no		
Barracudina	Magnisudis atlantica	Duckbill barracudina			LC	circumglobal, deep	no		
Barracudina	Paralepis elongata	Barracudina			LC	widespread, deep	no		
Barracudina	Sudis atrox	Hideous barracudina			LC	circumglobal, deep	no		
Barreleye	Opisthoproctus grimaldii	Grimaldi's barreleye			LC	circumtropical, deep	no		
Barreleye	Winteria telescopa	Barreleye			LC	circumtropical, deep	no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Bigeye	Cookeolus japonicus	Deepwater bigeye			LC	circumglobal, deep	no		
Bigeye	Heteropriacanthus cruentatus	Glasseye snapper			LC	circumglobal, deep	no		
Bigeye	Priacanthus hamrur	Moontail bullseye			LC	Indo-west Pacific	no		-
Billfish	Tetrapturus angustirostris	Shortbill spearfish			DD	widespread	yes		I
Billfish	Xiphias gladius	Swordfish			LC	circumglobal	yes		I
Black seadevil	Melanocetus johnsonii	Humpback anglerfish			LC	widespread, deep	no	-	
Black seadevil	Melanocetus murrayi	Black seadevil			LC	circumglobal, deep	no		
Blenny	Cirripectes castaneus	Chestnut blenny			LC	widespread	no		
Blenny	Entomacrodus caudofasciatus	Bartail blenny			LC	western and central Pacific	no		
Blenny	Entomacrodus cymatobiotus	Pacific rockskipper			LC	Pacific	no		
Blenny	Petroscirtes mitratus	Highfinned blenny			LC	Indo-west Pacific	no		
Blenny	Plagiotremus tapeinosoma	Piano fangblenny			LC	Indo-Pacific	no		
Blenny	Salarias sinuosus	Fringelip blenny			LC	restricted	no		-
Boa	Candoia bibroni	Solomon Island tree	II		LC		no		
Boarfish	Antigonia capros	Deep-bodied boarfish			LC	widespread, deep	no		
Booby	Sula sula	Red-footed booby			LC	18500000	yes		
Booby	Sula leucogaster	Brown booby			LC	223000000	no		-
Booby	Sula dactylatra	Masked booby			LC	211000000	no		
Bristlemouth	Cyclothone acclinidens	Bent-tooth bristlemout	h		LC	circumglobal, deep	no		
Bristlemouth	Cyclothone alba	Pale bristlemouth			LC	circumglobal, deep	no		
Bristlemouth	Cyclothone braueri	Brauer's bristlemouth			LC	circumglobal, deep	no		
Bristlemouth	Cyclothone microdon	Smalltooth bristlemout	th		LC	circumglobal, deep	no		-
Bristlemouth	Cyclothone pallida	Bicolored bristlemouth	1		LC	circumglobal, deep	no		-
Bristlemouth	Cyclothone pseudopallida	Slender bristlemouth			LC	circumglobal, deep	no		
Bristlemouth	Diplophos taenia	Pacific portholefish			LC	circumglobal	no		-
Bristlemouth	Gonostoma atlanticum	Bristlemouth			LC	widespread, deep	no		
Bristlemouth	Gonostoma elongatum	Elongated bristlemout	h		LC	circumglobal, deep	no		-
Bristlemouth	Manducus maderensis	Bristlemouth			DD	widespread, deep	no		-
Butterflyfish	Chaetodon auriga	Threadfin butterflyfish	à		LC	Indo-Pacific	no		-
Butterflyfish	Chaetodon bennetti	Bennett's butterflyfish			DD	widespread, uncommon	no		-
Butterflyfish	Chaetodon citrinellus	Citron butterflyfish			LC	Indo-Pacific	no		
Butterflyfish	Chaetodon ephippium	Saddleback butterflyfis	sh		LC	Indo-Pacific	no		-
Butterflyfish	Chaetodon flavirostris	Dusky butterflyfish			LC	widespread	no		-
Butterflyfish	Chaetodon guentheri	Guentheri butterflyfish			LC	western Pacific	no		-
Butterflyfish	Chaetodon kleinii	Whitespotted butterfly	fish		LC	Indo-Pacific	no		-
Butterflyfish	Chaetodon lineolatus	Lined butterflyfish			LC	Indo-Pacific	no		
Butterflyfish	Chaetodon lunula	Redstripe butterflyfish			LC	Indo-Pacific	no		
Butterflyfish	Chaetodon lunulatus	Oval butterflyfish			LC	western Pacific	no		
Butterflyfish	Chaetodon melannotus	Blackbacked butterflyf	ish		LC	Indo-west Pacific	no		
Butterflyfish	Chaetodon mertensii	Orangebar butterflyfisl			LC	western Pacific	no		
Butterflyfish	Chaetodon ornatissimus	Ornate butterflyfish			LC	Indo-west Pacific	no	-	
Butterflyfish	Chaetodon pelewensis	Dot and dash butterfly	fish		LC	south Pacific	no		
Butterflyfish	Chaetodon plebius	Blueblotch butterflyfish			LC	western Pacific	no		-

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Butterflyfish	Chaetodon quadrimaculatus	Fourspot butterflyfish			LC	Indo-west Pacific, Pacific, uncommon	no		
Butterflyfish	Chaetodon speculum	Oval-spot butterflyfish			LC	Indo-west Pacific	no		
Butterflyfish	Chaetodon trifascialis	Triangulate butterflyfisl	n		LC	widespread	no	-	-
Butterflyfish	Chaetodon ulietensis	3			LC				-
Butterflyfish	Chaetodon unimaculatus	Teardrop butterflyfish			LC	Indo-Pacific	no		-
Butterflyfish	Chaetodon vagabundus	Vagabond butterflyfish			LC	widespread	no		
Butterflyfish	Forcipiger flavissimus	Long-nosed butterflyfis	sh		LC	widespread	no	-	-
Butterflyfish	Forcipiger longirostris	Black long-nosed butte	erflyfish		LC	Indo-Pacific	no	-	-
Butterflyfish	Hemitaurichthys polylepis	Pyramid butterflyfish			LC	Central western Pacific	no		-
Butterflyfish	Heniochus acuminatus	Bannerfish			LC	Indo-Pacific	no		-
Butterflyfish	Heniochus chrysostomus	Pennant bannerfish	1	8 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LC	Indo-Pacific	no		-
Butterflyfish	Heniochus monoceros	Masked bannerfish			LC	Indo-Pacific	no		-
Butterflyfish	Heniochus singularis	Singular bannerfish		-	LC	Indo-Pacific, Pacific	no		
Cardinalfish	Ostorhinchus lateralis	Humpback cardinalfish	1		LC	Indian Ocean, Indo- Pacific	no		
Chub	Kyphosus cinerascens	Highfin chub			LC	widespread	no		
Chub	Kyphosus sectatrix	Bermuda chub	1		LC	widespread	no		
Clingfish	Pherallodus indicus	Smalldisc clingfish			LC	Indo-west Pacific	no		-
Collared wriggler	Xenisthmus eirospilus	Spotted wriggler			LC	southwest Pacific	no		-
Cone snail	Conus terebra	Cone snail			LC	Indo-Pacific	no		-
Coral	Antipathes dichotoma	Į.				uncertain		0	
Coral	Acropora abrotanoides	Acropora species			LC		no		
Coral	Acropora aculeus	Acropora species	11		VU		no		-
Coral	Acropora acuminata	Acropora species			VU		no		-
Coral	Acropora anthocercis	Acropora species			VU		no		-
Coral	Acropora aspera	Acropora species			VU		no	0	
Coral	Acropora austera	Acropora species			NT		no		
Coral	Acropora brueggemanni	Acropora species				uncertain			
Coral	Acropora carduus	Acropora species			NT		no		-
Coral	Acropora caroliniana	Acropora species			VU		no		-
Coral	Acropora cerealis	Acropora species			LC		no		-
Coral	Acropora chesterfieldensis	Acropora species	II		LC		no		
Coral	Acropora clathrata	Acropora species	II		LC		no		-
Coral	Acropora copiosa	Acropora species	II		DD		no		-
Coral	Acropora crateriformis	Acropora species	II			uncertain			-
Coral	Acropora cuneata	Acropora species	II			widespread			
Coral	Acropora cytherea	Acropora species	II		LC		no		
Coral	Acropora dendrum	Acropora species	II		VU		no		-
Coral	Acropora digitifera	Acropora species	II		NT		no		
Coral	Acropora divaricata	Acropora species	II		NT		no		
Coral	Acropora donei	Acropora species	II		VU		no		
Coral	Acropora echinata	Acropora species	II	9	VU		no		
Coral	Acropora elseyi	Acropora species	II	-	LC		no		-
Coral	Acropora exquisita	Acropora species	Ш		DD		no		
Coral	Acropora florida	Branching coral	II		NT		no		
Coral	Acropora formosa	Staghorn coral	II		NT		no		
Coral	Acropora gemmifera	Acropora species			LC		no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Coral	Acropora globiceps	Acropora species			VU		no		
Coral	Acropora grandis	Acropora species			LC		no	-	
Coral	Acropora granulosa	Acropora species			NT		no		
Coral	Acropora horrida	Acropora species			VU		no		
Coral	Acropora humilis	Finger coral			NT		no	-	
Coral	Acropora hyacinthus	Brush coral	П		NT		no		
Coral	Acropora inermis	Acropora species	П		DD		no		
Coral	Acropora insignis	Acropora species	Ш		DD		no		
Coral	Acropora intermedia	Acropora species	II			widespread			
Coral	Acropora kirstyae	Acropora species	Ш		VU		no		
Coral	Acropora latistella	Acropora species	II		LC		no		
Coral	Acropora listeri	Acropora species	II		VU		no	2	
Coral	Acropora longicyathus	Acropora species	П		LC		no	0	
Coral	Acropora loripes	Acropora species	II		NT		no		
Coral	Acropora lovelli	Acropora species	11		VU		no		
Coral	Acropora lutkeni	Acropora species	11		NT		no	3	
Coral	Acropora microclados	Acropora species	11		VU		no	2	
Coral	Acropora microphthalma	Acropora species	11		LC		no		
Coral	Acropora millepora	Acropora species	11		NT		no		
Coral	Acropora monticulosa	Acropora species	II		NT		no		
Coral	Acropora nana	Acropora species	11		NT		no		
Coral	Acropora nasuta	Acropora species			NT		no		
Coral	Acropora nobilis	Acropora species	11		LC		no		
Coral	Acropora palifera	Acropora species				widespread			
Coral	Acropora palmerae	Acropora species			VU		no		
Coral	Acropora paniculata	Acropora species			VU		no		
Coral	Acropora parilis	Acropora species			DD		no		
Coral	Acropora polystoma	Acropora species			VU		no		
Coral	Acropora prostrata	Acropora species			DD		no		
Coral	Acropora pulchra	Acropora species			LC		no		
Coral	Acropora retusa	Acropora species			VU		no		
Coral	Acropora robusta	Acropora species			LC		no	-	
Coral	Acropora rosaria	Acropora species			DD		no		
Coral	Acropora samoensis	Acropora species			LC		no		
Coral	Acropora sarmentosa	Acropora species			LC		no		
Coral	Acropora secale	Acropora species			NT		no	-	
Coral	Acropora selago	Acropora species			NT		no		
Coral	Acropora solitaryensis	Acropora species			VU		no	-	
Coral	Acropora speciosa	Acropora species			VU		no		
Coral	Acropora spicifera	Acropora species			VU		no		
Coral	Acropora subglabra	Acropora species			LC		no		
Coral	Acropora subulata	Acropora species			LC		no		
Coral	Acropora tenuis	Acropora species			NT		no		
Coral	Acropora tortuosa	Acropora species			LC		no	-	
Coral	Acropora tutuilensis	Acropora species	 		DD		no	-	
Coral	Acropora valenciennesi	Acropora species	 		LC		no		
Coral	Acropora valida	Acropora species	 		LC		no	-	
Coral	Acropora vaughani	Acropora species	 		VU		no	-	
Coral	Acropora verweyi	Acropora species	!!		VU		no	-	

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Coral	Acropora yongei	Acropora species	II		LC		no		
Coral	Astreopora cucullata	Astreopora species	11		VU		no		
Coral	Astreopora gracilis	Astreopora species	II		LC		no		
Coral	Astreopora listeri	Astreopora species	Ш		LC		no	0	
Coral	Astreopora myriophthalma	Astreopora species	II		LC		no		
Coral	Astreopora randalli	Astreopora species	11		LC		no	0	
Coral	Astreopora scabra	Astreopora species	II		LC	2	no		-
Coral	Astreopora suggesta	Astreopora species	11		LC		no	-	-
Coral	Montipora aequituberculata	Montipora species	11	9	LC		no		
Coral	Montipora angulata	Montipora species	II		VU		no		
Coral	Montipora australiensis	Montipora species	II		VU		no		
Coral	Montipora calcarea	Montipora species	11		VU		no		
Coral	Montipora caliculata	Montipora species		-	VU		no		
Coral	Montipora capitata	Montipora species			NT		no		
Coral	Montipora capricornis	Montipora species			VU		no		-
Coral	Montipora corbettensis	Montipora species			VU		no		
Coral	Montipora crassituberculata	Montipora species	II		VU		no		
Coral	Montipora danae	Montipora species			LC		no		-
Coral	Montipora digitata	Montipora species			LC		no		
Coral	Montipora efflorescens	Montipora species			NT		no		
Coral	Montipora effusa	Montipora species			NT		no		
Coral	Montipora floweri	Montipora species			LC		no		
Coral	Montipora foliosa	Montipora species			NT		no		
Coral	Montipora foveolata	Montipora species		-	NT		no	-	
Coral	Montipora gaimardi	Montipora species		-	VU		no	-	
Coral	Montipora grisea	Montipora species			LC		no		
Coral	Montipora hispida	Montipora species			LC		no		
Coral	Montipora hoffmeisteri	Montipora species			LC		no		
Coral	Montipora incrassata	Montipora species			NT		no		-
Coral	Montipora informis	Montipora species			LC		no		-
Coral	Montipora lobulata	Montipora species			VU		no		
Coral	Montipora millepora	Montipora species			LC		no		
Coral	Montipora mollis	Montipora species			LC		no		
Coral	Montipora monasteriata	Montipora species	II		LC		no	-	-
Coral	Montipora nodosa	Montipora species			NT		no		
Coral	Montipora peltiformis	Montipora species	II		NT		no		
Coral	Montipora spongodes	Montipora species	II		LC		no		
Coral	Montipora spumosa	Montipora species	II		LC		no		
Coral	Montipora stellata	Montipora species			LC	2	no		
Coral	Montipora tuberculosa	Montipora species	II		LC		no		-
Coral	Montipora turgescens	Montipora species			LC		no		
Coral	Montipora turtlensis	Montipora species			VU		no		
Coral	Montipora undata	Montipora species	11		NT		no		
Coral	Montipora venosa	Montipora species	11	9	NT		no		
Coral	Montipora verrucosa	Montipora species		-	LC		no		
Coral	Coeloseris mayeri	Coeloseris species			LC		no		
Coral	Gardineroseris planulata	Gardineroseris species	11		LC		no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Coral	Leptoseris explanata	Leptoseris species			LC		no		
Coral	Leptoseris gardineri	Leptoseris species			LC		no		
Coral	Leptoseris hawaiiensis	Leptoseris species			LC		no		
Coral	Leptoseris incrustans	Leptoseris species	II		VU		no		
Coral	Leptoseris mycetoseroides	Leptoseris species	II		LC		no		
Coral	Leptoseris papyracea	Leptoseris species	11		LC		no		
Coral	Leptoseris scabra	Leptoseris species	11		LC		no		
Coral	Leptoseris solida	Leptoseris species	11		LC		no		
Coral	Leptoseris yabei	Leptoseris species	11		VU		no		
Coral	Pachyseris rugosa	Pachyseris species	Ш		VU		no		
Coral	Pachyseris speciosa	Pachyseris species	Ш		LC		no		
Coral	Pavona bipartita	Pavona species	11		VU		no		
Coral	Pavona cactus	Pavona species	11		VU		no		-
Coral	Pavona clavus	Pavona species			LC		no		-
Coral	Pavona decussata	Pavona species	11		VU		no		-
Coral	Pavona divaricata	Pavona species				widespread			-
Coral	Pavona duerdeni	Pavona species			LC		no		-
Coral	Pavona explanulata	Pavona species			LC		no		-
Coral	Pavona frondifera	Pavona species			LC		no		-
Coral	Pavona maldivensis	Pavona species			LC		no		
Coral	Pavona minuta	Pavona species			NT		no		
Coral	Pavona varians	Pavona species			LC		no		
Coral	Pavona venosa	Pavona species			VU		no		
Coral	Stylocoeniella armata	Stylocoeniella species			LC		no		
Coral	Stylocoeniella guentheri	Stylocoeniella species			LC		no		
Coral	Caryophyllia scobinosa	Caryophyllia species				widespread, uncommon			
Coral	Euphyllia cristata	Euphyllia species			VU		no		-
Coral	Euphyllia glabrescens	Euphyllia species			NT		no		-
Coral	Heterocyathus aequicostatus	Heterocyathus species			LC		no		
Coral	Physogyra lichtensteini	Physogyra species			VU		no		
Coral	Plerogyra simplex	Plerogyra species			NT		no		-
Coral	Plerogyra sinuosa	Plerogyra species			NT		no		-
Coral	Enallopsammia rostrata	Enallopsammia species	II			widespread			
Coral	Heteropsammia cochlea	Heteropsammia species	II		LC		no		
Coral	Tubastraea micranthus	Tubastrea species				uncertain			-
Coral	Turbinaria frondens	Turbinaria species			LC		no		-
Coral	Turbinaria mesenterina	Turbinaria species			VU		no		-
Coral	Turbinaria patula	Turbinaria species			VU		no		
Coral	Turbinaria peltata	Turbinaria species			VU		no		
Coral	Turbinaria radicalis	Turbinaria species			NT		no		
Coral	Turbinaria reniformis	Turbinaria species			VU		no		
Coral	Turbinaria stellulata	Turbinaria species			VU		no		-
Coral	Barabattoia amicorum	Barabattoia species			LC		no		-
Coral	Barabattoia laddi	Barabattoia species			VU		no		-
Coral	Caulastraea furcata	Caulastrea species				uncertain			
Coral	Cyphastrea chalcidicum	Cyphastrea species			LC		no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Coral	Cyphastrea decadia	Cyphastrea species	I		LC		no		
Coral	Cyphastrea microphthalma	Cyphastrea species	II		LC		no		
Coral	Cyphastrea serailia	Cyphastrea species	П		LC		no		
Coral	Diploastrea heliopora	Diploastrea species	П		NT		no		
Coral	Echinopora gemmacea	Echinopora species	П		LC		no		
Coral	Echinopora hirsutissima	Echinopora species	П		LC		no		
Coral	Echinopora horrida	Echinopora species	П		NT		no		
Coral	Echinopora lamellosa	Echinopora species	П		LC		no		
Coral	Echinopora mammiformis	Echinopora species	П		NT		no		
Coral	Favia danae	Favia species	П		LC		no		
Coral	Favia danai	Favia species	П			Indo-west Pacific, rare			
Coral	Favia favus	Favia species	П		LC		no		
Coral	Favia helianthoides	Favia species	П		NT		no		
Coral	Favia lizardensis	Favia species	II		NT		no		
Coral	Favia maritima	Favia species	II		NT		no		
Coral	Favia matthaii	Favia species	П		NT		no		
Coral	Favia maxima	Favia species	11		NT		no		
Coral	Favia pallida	Favia species	П		LC		no		
Coral	Favia rotumana	Favia species	п		LC		no		-
Coral	Favia rotundata	Favia species	П		NT	2	no		
Coral	Favia speciosa	Favia species	П		LC		no		
Coral	Favia stelligera	Favia species	I		NT		no		
Coral	Favia veroni	Favia species	П		NT	1	no		
Coral	Favites abdita	Favites species	П		NT		no		
Coral	Favites bestae	Favites species	П		NT		no		
Coral	Favites chinensis	Favites species	П		NT		no		
Coral	Favites complanata	Favites species	П		NT		no		
Coral	Favites flexuosa	Favites species	П		NT		no		
Coral	Favites halicora	Favites species	П		NT		no		-
Coral	Favites pentagona	Favites species	П		LC		no		
Coral	Favites russelli	Favites species	П		NT		no		
Coral	Goniastrea aspera	Goniastrea species	П		LC		no		
Coral	Goniastrea australensis	Goniastrea species	11		LC		no		
Coral	Goniastrea edwardsi	Goniastrea species	II		LC		no		
Coral	Goniastrea favulus	Goniastrea species	П		NT		no		
Coral	Goniastrea palauensis	Goniastrea species	II		NT		no		
Coral	Goniastrea pectinata	Goniastrea species	II		LC		no		
Coral	Goniastrea retiformis	Goniastrea species	П		LC		no		
Coral	Leptastrea bottae	Leptastrea species	II		NT		no		
Coral	Leptastrea inaequalis	Leptastrea species	11		NT		no		
Coral	Leptastrea pruinosa	Leptastrea species	Ш		LC		no		
Coral	Leptastrea purpurea	Leptastrea species	II		LC		no		
Coral	Leptastrea transversa	Leptastrea species			LC		no		
Coral	Leptoria phrygia	Leptoria species	II		NT		no		
Coral	Montastrea annuligera	Montastrea species	II		NT		no		
Coral	Montastrea curta	Montastrea species	II		LC		no		
Coral	Montastrea magnistellata	Montastrea species	II		NT		no		
Coral	Montastrea valenciennesi	Montastrea species			NT		no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Coral	Oulophyllia bennettae	Oulophyllia species	II		NT		no		
Coral	Oulophyllia crispa	Oulophyllia species	II		NT		no		
Coral	Platygyra contorta	Platygyra species	П		LC		no		
Coral	Platygyra daedalea	Platygyra species	II		LC		no		
Coral	Platygyra lamellina	Platygyra species	П		NT		no		
Coral	Platygyra pini	Platygyra species			LC		no		
Coral	Platygyra ryukyuensis	Platygyra species	11		NT		no		
Coral	Platygyra sinensis	Platygyra species	11		LC		no	2	
Coral	Plesiastrea versipora	Plesiastrea species	Ш		LC		no	2	
Coral	Ctenactis albitentaculata	Ctenactis species	Ш		NT		no	2	
Coral	Ctenactis crassa	Ctenactis species	11		LC		no		
Coral	Ctenactis echinata	Ctenactis species	Ш		LC		no		
Coral	Fungia concinna	Fungia species	11		LC		no		-
Coral	Fungia distorta	Fungia species	Ш		LC		no		-
Coral	Fungia fragilis	Fungia species			LC		no	-	
Coral	Fungia fungites	Fungia species	11		NT		no	-	-
Coral	Fungia granulosa	Fungia species	Ш	2	LC		no	-	-
Coral	Fungia hexagonalis	Fungia species	Ш		LC		no		
Coral	Fungia horrida	Fungia species		8 	LC		no		-
Coral	Fungia klunzingeri	Fungia species	11		LC		no		
Coral	Fungia moluccensis	Fungia species		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LC		no		-
Coral	Fungia paumotensis	Fungia species		2 4 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	LC		no		-
Coral	Fungia repanda	Fungia species			LC		no		-
Coral	Fungia scruposa	Fungia species	11		LC		no		-
Coral	Fungia scutaria	Fungia species	11		LC		no		-
Coral	Fungia sinensis	Fungia species		5 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	LC		no		-
Coral	Fungia tenuis	Fungia species		5 7 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9	LC		no		-
Coral	Fungia vaughani	Fungia species			LC		no	2	-
Coral	Halomitra pileus	Halomitra species			LC		no		-
Coral	Heliofungia actiniformis	Heliofungia species			VU		no		-
Coral	Herpolitha limax	Herpolitha species		8 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	LC		no		
Coral	Herpolitha weberi	Herpolitha species		5 7 20 20 20 20 20 20 20 20 20 20 20 20 20	LC		no		-
Coral	Lithophyllon mokai	Lithophyllon species			LC		no		-
Coral	Lithophyllon undulatum	Lithophyllon species			NT		no		-
Coral	Podabacia crustacea	Podabacia species			LC		no		-
Coral	Podabacia motuporensis	Podabacia species			NT		no		
Coral	Polyphyllia novaehiberniae	Polyphyllia species	II		NT		no		
Coral	Polyphyllia talpina	Polyphyllia species	11		LC		no		
Coral	Sandalolitha dentata	Sandalolitha species	11		LC		no		
Coral	Sandalolitha robusta	Sandalolitha species	11		LC		no		
Coral	Zoopilus echinatus	Zoopilus species	Ш		LC		no		-
Coral	Hydnophora exesa	Hydnophora species	II		NT		no		-
Coral	Hydnophora grandis	Hydnophora species			LC		no		
Coral	Hydnophora microconos	Hydnophora species			NT		no	-	-
Coral	Hydnophora pilosa	Hydnophora species			LC		no		
Coral	Hydnophora rigida	Hydnophora species			LC		no		
Coral	Merulina ampliata	Merulina species			LC		no		-
Coral	Merulina scabricula	Merulina species			LC		no		-

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km²)	Migrant	Shark NPOA	UNCLOS
Coral	Scapophyllia cylindrica	Scapophyllia species			LC		no		
Coral	Acanthastrea amakusensis	Acanthastrea species	II			Indo-west Pacific			
Coral	Acanthastrea bowerbanki	Acanthastrea species	П		VU		no	9	
Coral	Acanthastrea echinata	Acanthastrea species	Ш		LC		no		
Coral	Acanthastrea hemprichii	Acanthastrea species	П		VU		no		
Coral	Acanthastrea hillae	Acanthastrea species	Ш		NT		no		
Coral	Acanthastrea ishigakiensis	Acanthastrea species	II		VU		no		
Coral	Blastomussa wellsi	Blastomussa species	П		NT		no		
Coral	Cynarina lacrymalis	Cynarina species			NT		no	-	
Coral	Lobophyllia corymbosa	Lobophyllia species			LC		no		
Coral	Lobophyllia hataii	Lobophyllia species			LC		no		
Coral	Lobophyllia hemprichii	Lobophyllia species			LC		no		
Coral	Lobophyllia pachysepta	Lobophyllia species			NT		no		
Coral	Scolymia vitiensis	Scolymia species			NT		no		
Coral	Symphyllia agaricia	Symphyllia species			LC		no	-	
Coral	Symphyllia radians	Symphyllia species			LC		no		
Coral	Symphyllia recta	Symphyllia species			LC		no		
Coral	Symphyllia valenciennesii	Symphyllia species			LC		no	-	
Coral	Acrhelia horrescens	Acrhelia species				Indo-west Pacific			
Coral	Galaxea astreata	Galaxea species			VU		no		
Coral	Galaxea fascicularis	Galaxea species			NT		no		
Coral	Echinophyllia aspera	Echinophyllia species	11		LC		no		
Coral	Echinophyllia echinata	Echinophyllia species			LC		no		
Coral	Echinophyllia echinoporoides	Echinophyllia species	II		LC		no		
Coral	Mycedium elephantotus	Mycedium species			LC		no		
Coral	Mycedium mancaoi	Mycedium species			LC		no		
Coral	Oxypora glabra	Oxypora species			LC		no		
Coral	Oxypora lacera	Oxypora species			LC		no		
Coral	Pectinia alcicornis	Pectinia species			VU		no		
Coral	Pectinia elongata	Pectinia species			NT		no		
Coral	Pectinia lactuca	Pectinia species			VU		no	-	
Coral	Pectinia paeonia	Pectinia species			NT		no		
Coral	Madracis kirbyi	Madracis species			LC		no	-	
Coral	Pocillopora capitata	Pocillopora species			LC		no		
Coral	Pocillopora damicornis	Cauliflower coral			LC		no		
Coral	Pocillopora elegans	Pocillopora species			VU		no		
Coral	Pocillopora eydouxi	Pocillopora species			NT		no		
Coral	Pocillopora ligulata	Pocillopora species			LC		no		
Coral	Pocillopora meandrina	Pocillopora species			LC		no		
Coral	Pocillopora verrucosa	Pocillopora species			LC		no		
Coral	Pocillopora woodjonesi	Pocillopora species			LC		no		
Coral	Seriatopora caliendrum	Birdnest coral	"		NT		no		
Coral	Seriatopora hystrix	Thin birdsnest coral			LC		no		
Coral	Seriatopora stellata	Seriatopora species	"		NT		no		
Coral	Stylophora pistillata	Smooth cauliflower coral			NT		no		
Coral	Stylophora subseriata	Stylophora species			LC		no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Coral	Alveopora allingi	Alveopora species	П		VU		no		
Coral	Alveopora fenestrata	Alveopora species	Ш		VU		no		
Coral	Alveopora ocellata	Alveopora species	П		DD		no		
Coral	Alveopora spongiosa	Alveopora species	Ш		NT		no		
Coral	Alveopora verrilliana	Alveopora species	Ш		VU		no		
Coral	Goniopora columna	Goniopora species	П		NT		no		
Coral	Goniopora djiboutiensis	Goniopora species	П		LC		no		
Coral	Goniopora lobata	Goniopora species	Ш		NT		no		
Coral	Goniopora minor	Goniopora species	П		NT		no		
Coral	Goniopora pandoraensis	Goniopora species	П		LC		no		
Coral	Goniopora somaliensis	Goniopora species	П		LC		no		
Coral	Goniopora stokesi	Goniopora species	Ш		NT		no		
Coral	Goniopora stutchburyi	Goniopora species	Ш		LC		no		
Coral	Goniopora tenuidens	Goniopora species	Ш		LC		no		
Coral	Porites annae	Porites species	П		NT		no		-
Coral	Porites arnaudi	Porites species	11	2 2 2 2 3 3 4 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	LC		no		-
Coral	Porites australiensis	Porites species	П		LC		no		-
Coral	Porites cylindrica	Porites species			NT		no		-
Coral	Porites horizontalata	Porites species	Ш	5 3 4 5 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	VU		no		-
Coral	Porites latistellata	Porites species	Ш			uncertain			
Coral	Porites lichen	Porites species	1		LC		no		-
Coral	Porites lobata	Porites species			NT		no		-
Coral	Porites lutea	Porites species	11		LC		no		
Coral	Porites monticulosa	Porites species			LC		no		
Coral	Porites murrayensis	Porites species			NT		no		
Coral	Porites nigrescens	Porites species			VU		no		
Coral	Porites rus	Porites species	11		LC		no		-
Coral	Porites solida	Porites species	1		LC		no		-
Coral	Porites vaughani	Porites species			LC		no		
Coral	Coscinaraea columna	Coscinaraea species			LC		no		
Coral	Coscinaraea exaesa	Coscinaraea species				uncertain			
Coral	Coscinaraea wellsi	Coscinaraea species			LC		no		
Coral	Psammocora contigua	Psammocora species			NT		no		
Coral	Psammocora digitata	Psammocora species			NT		no		
Coral	Psammocora explanulata	•			LC		no		-
Coral	Psammocora haimeana	Psammocora species			LC		no		
Coral	Psammocora nierstraszi	Psammocora species		6 9 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	LC		no		-
Coral	Psammocora profundacella	Psammocora species	II		LC		no		
Coral	Psammocora superficialis	Psammocora species	11		LC		no		
Coral	Trachyphyllia geoffroyi	Trachyphyllia species	11		NT		no		
Coral	Tubipora musica	Organ pipe coral	1		NT		no		
Coral	Millepora alcicornis	Millepora species			LC		no		
Coral	Millepora dichotoma	Millepora species			LC		no		
Coral	Millepora exaesa	Millepora species			LC		no		
Coral	Millepora platyphylla	Fire coral			LC		no		
Coral	Crypthelia pudica	Crypthelia species				widespread			
Coral	Distichopora livida	Distichopora species				Indo-west Pacific, rare			
Coral	Coscinaraea exesa	Coral			LC	central Indo-Pacific	no		-

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km²)	Migrant	Shark NPOA	UNCLOS
Coral	Galaxea horrescens	Coral	Ш		LC	no			
Coral	Heliopora coerulea	Blue coral	1/11		VU	no			
Coral	Millepora tenera	Coral	II		LC	no			
Coral	Paraclavarina triangularis	Coral			NT	restricted	no		
Curlew	Numenius tahitiensis	Bristle-thighed curlew	1/11		VU	95900	yes		
Cusk-eel	Abyssobrotula galatheae	Cusk-eel			LC	cosmopolitan, deep waters	no		
Cusk-eel	Bassozetus compressus	Abyssal cusk-eel			LC	widespread, deep	no		
Cusk-eel	Spectrunculus grandis	Giant cusk-eel			LC	circumglobal, deep	no		
Cutlassfish	Trichiurus lepturus	Common hairtail			LC	circumglobal	no		
Cycad	Cycas seemannii	Cycad			VU	no			-
Dartfish	Ptereleotris evides	Blackfin dartfish	1		LC	Indian Ocean, Indo- Pacific	no		
Dartfish	Ptereleotris heteroptera	Blacktail goby			LC	Indian Ocean, Indo- Pacific	no		
Dolphin	Globicephala macrorhynchus	Short-finned pilot whate	e II		DD	unknown			I
Dolphin	Grampus griseus	Risso's dolphin	II	II	LC	cosmopolitan, deep waters	unknown		I
Dolphin	Stenella longirostris	Spiner dolphin	II	II	DD	circumtropical and subtropical	unknown		I
Dolphin	Steno bredanensis	Rough-toothed dolphin			LC	unknown			I
Dolphin	Peponocephala electra	Melon-headed whale			LC	no			I
Dolphin	Stenella attenuata	Pantropical spotted dolphin	II	II	LC	circumtropical	no		I
Dolphin	Stenella coeruleoalba	Striped dolphin	II	П	LC	widespread	no		I
Dolphin	Tursiops truncatus	Common bottlenose dolphin	II	1/11	LC	circumglobal	no		I
Dolphinfish	Coryphaena hippurus	Dolphinfish			LC	widespread	yes		I
Dottyback	Cypho purpurascens	Oblique-lined dottyback	(LC	restricted	no		
Dottyback	Pseudochromis cyanotaenia	Bluebarred dottyback			LC	western Pacific	no		
Dragnofish	Aristostomias lunifer	Dragonfish			LC	circumglobal, deep	no		
Dragonfish	Astronesthes gemmifer	Snaggletooth			DD	circumglobal, deep	no		-
Dragonfish	Astronesthes indicus	Dragonfish			LC	circumglobal, deep	no		-
Dragonfish	Eustomias braueri	Dragonfish			DD	widespread, deep	no		
Dragonfish	Eustomias enbarbatus	Dragonfish			LC	widespread, deep	no		
Dragonfish	Eustomias macrurus	Scaleless dragonfish			LC	circumglobal, deep	no		
Dragonfish	Eustomias satterleei	Dragonfish			LC	Subtropical, temperate, deep	no		
Dragonfish	Eustomias simplex	Dragonfish			LC	Subtropical, temperate, deep	no		
Dragonfish	Idiacanthus fasciola	Black dragonfish	-		LC	circumglobal, temperate, subtropical	no		
Dragonfish	Malacosteus niger	Black loosejaw			LC	circumglobal, deep	no		
Dragonfish	Melanostomias melanops	Dragonfish			LC	circumglobal, deep	no		
Dragonfish	Melanostomias valdiviae	Valdivia black dragonfis	sh		LC	circumglobal, deep	no		
Dragonfish	Photonectes margarita	Dragonfish			LC	widespread, deep	no		-
Dragonfish	Photonectes parvimanus	Dragonfish			LC	Subtropical, temperate, deep	no		
Dragonfish	Stomias affinis	Dragonfish			LC	circumglobal, deep	no		
Dragonfish	Thysanactis dentex	Dragonfish			LC	widespread, deep	no		
Driftfish	Cubiceps capensis	Cape cigarfish			LC	circumtropical, rare	no		-

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Driftfish	Nomeus gronovii	Man-of-war fish			LC	circumglobal, deep	no		
Driftfish	Psenes cyanophrys	Freckled driftfish			LC	circumglobal	no		
Driftfish	Psenes pellucidus	Bluefin driftfish			LC	circumglobal	no		
Eel	Anguilla obscura	Pacific shortfin eel			LC	Pacific	yes		
Emperor	Gnathodentex aureolineatus	Goldspot emperor			LC	widespread	no		
Emperor	Gymnocranius euanus	Japanese large-eyed	bream		LC	western Pacific	no		
Emperor	Lethrinus atkinsoni	Pacific yellowtail emperor			LC	Indo-west Pacific	no		
Emperor	Lethrinus nebulosus	Spangled emperor			LC	Indo-west Pacific	no		
Emperor	Lethrinus rubrioperculatus Spotcheek emperor				LC	Indo-west Pacific	no		
Emperor	Lethrinus xanthochilus	Yellowlip emperor			LC	Indo-west Pacific	no		
Emperor	Monotaxis grandoculis	Bigeye bream			LC	Indo-west Pacific	no		
Euphorbia	Excoecaria agallocha	Euphorbia			LC	Indo-Pacific	no		
Fangtooth	Anoplogaster cornuta	Common fangtooth			LC	widespread, deep	no		
Fern	Acrostichum speciosum	Fern			LC	Indo-west Pacific	no		
Flounder	Asterorhombus intermedius	Blotched fliunder	1		LC	Indo-west Pacific	no		
Flutemouth	Aulostomus chinensis	Flutemouth			LC	widespread	no		
Flutemouth	Fistularia commersonii	Flutemouth			LC	Indo-Pacific	no		
Flutemouth	Fistularia petimba	Red cornetfish			LC	Indo-Pacific	no		
Flying fish	Cheilopogon furcatus	Spotfin flying fish			LC	circumtropical	no		
Flying fish	Cheilopogon heterurus	Blotchwing flying fish			LC	widespread	no		
Flying fish	Exocoetus volitans	Two-winged flying fish			LC	circumtropical	yes		
Flying fish	Hirundichthys speculiger	Black-finned flying fish			LC	circumtropical	yes		
Flying fox	Pteropus tonganus	Pacific flying fox	1		LC	unknown	,		
Flying gurnard	Dactyloptera orientalis	Oriental flying gurnard			LC	Indo-west Pacific	no		
Frigatebird	Fregata ariel	Lesser frigatebird			LC	167000000	no		
Frigatebird	Fregata minor	Great frigatebird			LC	126000000	no		
Fusilier	Pterocaesio digramma	Double-lined fusilier			LC	Indo-Pacific	no		
Fusilier	Pterocaesio tile	Dark-banded fusilier			LC	Indian Ocean, Indo- Pacific	no		
Fusilier	Pterocaesio trilineata	Three-lined fusilier			LC	western Pacific	no		
Giant clam	Hippopus hippopus	Horse's hoof clam	II		LR/cd		no		
Giant clam	Tridacna crocea	Boring clam			LR/lc		no		
Giant clam	Tridacna derasa	Southern giant clam			VU		no		
Giant clam	Tridacna gigas	Giant clam			VU		no		
Giant clam	Tridacna maxima	Small giant clam			LR/cd		no		
Giant clam	Tridacna squamosa	Fluted giant clam			LR/cd		no		
Giant clam	Tridacna tevoroa	Tevoro clam			VU		no		
Goatfish	Mulloidichthys flavolineatus	Yellowstripe goatfish			LC	Indo-west Pacific	no		
Goatfish	Mulloidichthys vanicolensis	Yellowfin goatfish			LC	Indo-Pacific	no		
Goatfish	Parupeneus barberinoides	Bicolor goatfish			LC	Indo-west Pacific	no		
Goatfish	Parupeneus barnerinus	Dash-and-dot goatfish			LC	Indo-Pacific	no		
Goatfish	Parupeneus ciliatus	Whitesaddle goatfish			LC	Indian Ocean, Indo- Pacific	no		
Goatfish	Parupeneus cyclostomus	Goldsaddle goatfish			LC	Indo-west Pacific	no		
Goatfish	Parupeneus	Cinnabar goatfish			LC	Indo-west Pacific	no		
Goatfish	Parupeneus heptacanthus	Cinnabar goatfish			LC	Indo-west Pacific	no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Goatfish	Parupeneus multifasciatus	Banded goatfish		2	LC	Indo-Pacific	no		
Goatfish	Parupeneus pleurostigma	Sidespot goatfish			LC	Indian Ocean, Indo- Pacific	no		
Goatfish	Parupeneus spilurus	Tailspot goatfish			LC	western Pacific	no		
Goby	Bryaninops loki	Loki whip-goby			LC	Indo-Pacific	no		-
Goby	Bryaninops yongei	Seawhip goby			LC	Indo-Pacific	no		-
Goby	Ctenogobiops crocineus	Silverspot shrimpgoby		8 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LC	Indo-Pacific	no		-
Goby	Eviota queenslandica	Queensland dwarfgoby	,		LC	Indo-Pacific	no		-
Goby	Eviota saipanensis	Saipan pygmy goby		-	LC	Central western Pacific	no		-
Goby	Eviota sigillata	Adorned dwarfgoby			LC	Indo-west Pacific	no		-
Goby	Eviota smaragdus	Earspot pygmy goby			LC	western Pacific	no		
Goby	Eviota sparsa	Speckled pygmy goby			LC	western Pacific	no		
Goby	Eviota zebrina	Zebra dwarfgoby			LC	Indo-Pacific	no		-
Goby	Eviota zonura	Zoned dwarfgoby			LC	western Pacific	no		-
Goby	Feia nympha	Nymph goby			LC	Indo-west Pacific	no		
Goby	Fusigobius duospilus	Barenaped goby	1		LC	Indo-west Pacific	no		
Goby	Fusigobius neophytus	Sand goby			LC	Indo-Pacific	no		
Goby	Macrodontogobius wilburi	Largetooth goby			LC	Indo-Pacific	no		-
Goby	Paragobiodon echinocephalus	Redhead coral goby			LC	Indo-Pacific	no		
Goby	Paragobiodon lacunicolus	Blackfin coral goby			LC	Indo-Pacific	no		
Goby	Paragobiodon xanthosomus	Emerald coral goby			LC	Indo-Pacific	no		
Goby	Pleurosicya mossambica	Toothy goby			LC	Indo-Pacific	no		-
Goby	Priolepis semidoliata	Barrel goby			LC	Indo-Pacific	no		
Goby	Trimmatom nanus	Midget dwarfgoby			LC	Indo-Pacific	no		-
Greeneye	Chlorophthalmus agassizi	Agassiz's thread-sail fis	sh		LC	circumglobal, deep	no		-
Grenadier	Malacocephalus laevis	Armed grenadier			LC	widespread, deep	no		
Grouper	Epinephelus hexagonatus	Hexagon grouper	-		LC	Indo-Pacific	no		
Grouper	Epinephelus lanceolatus	Queensland grouper			VU	widespread	no		-
Grouper	Epinephelus polyphekadion	Camouflage grouper			NT	Indo-Pacific	no		
Grouper	Grammistes sexlineatus	Sixlined soapfish			LC	Indo-Pacific	no		
Grouper	Epinephelus octofasciatus	Eightbar grouper			DD	Indo-west Pacific	no		
Grouper	Lipropoma susumi	Meteor perch			LC	Indo-Pacific	no		
Grouper	Plectranthias nanus	Pygmy basslet			LC	Indian Ocean, Indo- Pacific	no		
Grouper	Plectranthias winniensis	Redblotch basslet			LC	Indo-west Pacific	no		
Grouper	Pseudogramma polyacantha	Boldspot soapfish			LC	Indian Ocean, Indo- Pacific	no		
Grouper	Pseudogramma xantha	Yellow podge			LC	restricted	no		
Gulper eels	Eurypharynx pelecanoides	Pelican gulper eel			LC	circumglobal, deep	no		
Hake	Antimora rostrata	Blue hake			LC	widespread, deep	no		
Halosaur	Aldrovandia affinis	Allied halosaur	·		LC	widespread, deep	no		
Hammerjaw	Omosudis lowii	Hammerjaw			LC	circumglobal, deep	no		
Harrier	Circus approximans	Swamp harrier		11	LC	17500000	yes		
Hatchetfish	Argyropelecus aculeatus	Lovely hatchetfish	<u>.</u>		LC	circumglobal, deep	no		
Hatchetfish	Argyropelecus gigas	Giant hatchetfish			LC	circumglobal, deep	no		
Hatchetfish	Argyropelecus sladeni	Hatchetfish			LC	circumglobal, deep	no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Hatchetfish	Sternoptyx diaphana	Diaphanous hatchetfis	h		LC	widespread, deep	no		
Hatchetfish	Sternoptyx pseudobscura	Highliht hatchetfish			LC	circumtropical, deep	no		
Hatchetfish	Sternoptyx pseudodiaphana	False oblique hatchetfi	ish		LC	circumglobal, deep	no		
Hatchetfish	Valenciennellus tripunctulatus	Constellationfisah			LC	widespread, deep	no		
Hawkfish	Amblycirrhitus bimacula	Twinspot hawkfish			LC	widespread	no		
Hawkfish	Amblycirrhitus unimacula	Hawkfish			LC	Indo-Pacific, Pacific	no		
Hawkfish	Cirrhitichthys falco	Dwarf hawkfish			LC	Indo-Pacific	no	-	
Hawkfish	Cirrhitichthys oxycephalus	Coral hawkfish			LC	Indo-Pacific	no		
Hawkfish	Cirrhitops hubbardi	Hawkfish			LC	restricted	no	-	
Hawkfish	Cirrhitus pinnulatus	Stocky hawkfish	1		LC	Indo-Pacific	no		
Hawkfish	Neocirrhites armatus	Flame hawkfish			LC	western Pacific	no		
Hawkfish	Paracirrhites arcatus	Arc-eye hawkfish			LC	Indian Ocean, Indo- Pacific	no		
Hawkfish	Paracirrhites forsteri	Blackside hawkfish			LC	Indian Ocean, Indo- Pacific	no		
Hawkfish	Paracirrhites hemistictus	Whitespot hawkfish			LC	Indo-Pacific	no	-	
Herring	Elops hawaiiensis	Giant herring			DD	Indo-west Pacific	no		
Iguana	Brachylophus fasciatus	Fiji banded iguana	I		EN		no		
Lancetfish	Alepisaurus brevirostris	Lancetfish			LC	widespread, deep	no		
Lanternfish	Benthosema suborbitale	Lanternfish			LC	widespread, mesopelagic	no		
Lanternfish	Centrobranchus nigroocellatus	Lanternfish			LC	widespread	no		
Lanternfish	Ceratoscopelus warmingii	Lanternfish			LC	widespread	no		
Lanternfish	Diaphus anderseni	Andersen's lanternfish	1		LC	widespread, deep	no		
Lanternfish	Diaphus brachycephalus	Lanternfish			LC	widespread, deep	no		
Lanternfish	Diaphus effulgens	Lanternfish			LC	widespread, deep	no		
Lanternfish	Diaphus fragilis	Lanternfish	_		LC	widespread, deep	no		
Lanternfish	Diaphus lucidus	Lanternfish	_		LC	widespread, deep	no		
Lanternfish	Diaphus lucidus	Lutken's lanternfish			LC	widespread, deep	no		
Lanternfish	Diaphus mollis	Soft lanternfish			LC	widespread, deep	no		
Lanternfish	Diaphus perspicillatus	Lanternfish			LC	widespread, deep	no		
Lanternfish	Diaphus splendidus	Lanternfish			LC	widespread, deep	no		
Lanternfish	Diogenichthys atlanticus	Longfin lanternfish			LC	circumtropical	no		
Lanternfish	Hygophum reinhardtii	Lanternfish			LC	widespread, deep	no		
Lanternfish	Lampadena luminosa	Lanternfish			LC	circumglobal, deep	no		
Lanternfish	Lampanyctus alatus	Lanternfish			LC	widespread, deep	no		
Lanternfish	Lampanyctus festivus	Lanternfish			LC	widespread, deep	no		
Lanternfish	Lampanyctus nobilis	Noble lanternfish			LC	widespread, deep	no		
Lanternfish	Lampanyctus pusillus	Pygmy lanternfish			LC	widespread, deep	yes		
Lanternfish	Lampanyctus tenuiformis	Lanternfish			LC	widespread, deep	no		
Lanternfish	Lobianchia gemellarii	Gemellar's lanternfish			LC	widespread, deep	yes		
Lanternfish	Myctophum asperum	Lanternfish			LC	widespread, deep	no		
Lanternfish	Myctophum nictidulum	Spotted lanternfish			LC	widespread, deep	no	2	
Lanternfish	Myctophum obtusirostre	Lanternfish			LC	widespread, deep	no	-	
Lanternfish	Myctophum selenops	Lanternfish			LC	widespread, deep	no		
Lanternfish	Nannobrachium lineatum	Lanternfish			LC	circumglobal, deep	no		
Lanternfish	Norolychnus valdiviae	Topside lanternfish			LC	widespread, deep	no		
Lanternfish	Notoscopelus	Patchwork lanternfish			LC	widespread, deep	no	-	
Landinion	resplendens				LU	maeopieau, ueep	UU		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Lanternfish	Taaningichthys bathyphilus	Deepwater lanternfish			LC	widespread, deep	no		
Leatherjacket	Acreichthys tomentosus	Bristletail filefish			LC	Indo-west Pacific	no		
Leatherjacket	Aluterus monoceros	Unicorn leatherjacket			LC	widespread	no		
Leatherjacket	Aluterus scriptus	Scribbled leatherjacket			LC	widespread	no		
Leatherjacket	Cantherhines dumerilii	Whitespotted filefish			LC	Indo-Pacific	no		
Leatherjacket	Cantherhines fronticinctus	Spectacled filefish			LC	Indo-west Pacific, uncommon	no		
Leatherjacket	Cantherhines pardalis	Honeycomb filefish			LC	widespread	no		
Leatherjacket	Oxymonacanthus Iongirostris	Harlequin filefish			VU	Indo-west Pacific	no	9	-
Leatherjacket	Paraluteres prionurus	Blacksaddled leatherjad	cket		LC	Indo-Pacific	no		
Leatherjacket	Pervagor alternans	Yelloweye filefish			LC	restricted	no		
Leatherjacket	Pervagor janthinosoma	Ear-spot filefish			LC	Indo-west Pacific	no		
Lightfish	Ichthyococcus ovatus	Ovate lightfish			LC	circumglobal, deep	no		
Lightfish	Vinciguerria nimbaria	Oceanic lightfish			LC	circumglobal, deep	no		
Lionfish	Dencrochirus brachypterus	Dwarf lionfish			LC	Indo-west Pacific	no		
Lionfish	Dencrochirus zebra	Zebra lionfish			LC	Indo-west Pacific	no		
Lionfish	Pterois antennata	Banded lionfish			LC	Indo-west Pacific	no		
Lionfish	Pterois volitans	Common lionfish			LC	Indo-west Pacific	no		
Lizardfish	Saurida gracilis	Gracile lizardfish			LC	Indo-Pacific, Pacific	no		
Lizardfish	Saurida nebulosa	Cloudy lizardfish			LC	Indo-Pacific	no		
Lizardfish	Synodus capricornis	Capricorn lizardfish			LC	widespread	no		
Lizardfish	Synodus dermatogenys	Sand lizardfish			LC	Indo-west Pacific	no		
Lizardfish	Synodus jaculum	Blackspot lizardfish			LC	Indo-west Pacific	no		
Lizardfish	Synodus variegatus	Variegated lizardfish			LC	Indo-west Pacific	no	-	
Lizardfish	Trachinocephalus myops	Snakefish			LC	circumtropical	no		
Lobster	Panulirus longipes	Longlegged spiny lobst	er		LC	Indian Ocean, Indo- Pacific	no		
Lobster	Panulirus penicillatus	Pronghorn spiny lobste	r		LC	widespread	no		
Lobster	Polycheles martini	Lobster			LC	restricted, deep	no		
Lobster	Puerulus angulatus	Banded whip lobster			LC	Indo-west Pacific	no		
Lorikeet	Vini australis	Blue-crowned lorikeet			LC		no		
Louvar	Luvarus imperialis	Louvar			LC	circumglobal	no		
Mackerel	Acanthocybium solandri	Wahoo			LC	cosmopolitan, tropical, warm temperate	yes		
Mackerel	Lepidocybium flavobrunneum	Escolar			LC	widespread	no		
Mackerel	Scomberomorus commers	son			NT	9			-
Mangrove	Bruguiera gymnorhiza	Oriental mangrove			LC	widespread	no		
Mangrove	Rhizophora stylosa	Red mangrove			LC	Indo-west Pacific	no		
Marlin	Makaira indica	Black marlin			DD	Indo-Pacific	yes		I
Marlin	Kajikia audax	Striped marlin			NT	widespread	yes	0	I
Marlin	Makaira nigricans	Blue marlin			LC	circumtropical	yes		I
Mola	Masturus lanceolatus	Sharptailed sunfish			LC	circumglobal	no		
Mola	Mola mola	Ocean sunfish			VU	circumglobal	no		
Moorish idol	Zanclus cornutus	Moorish idol			LC	Indo-west Pacific	no	0	-
Needlefish	Ablennes hians	Flat needlefish			LC	widespread	no	9	
Oarfish	Regalecus glesne	Giant oarfish			LC	circumglobal, deep	no		
Octopus	Amphitretus pelagicus	Octopus			LC	widespread, deep	no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Octopus	Argonauta argo	Octopus			LC	widespread	no		
Octopus	Argonauta boettigeri	Octopus			LC	Indo-west Pacific	no		
Octopus	Argonauta hians	Octopus			LC	widespread	no		
Octopus	Argonauta nodosa	Octopus			LC	Indo-west Pacific	no		
Octopus	Bolitaena pygmaea	Octopus			LC	circumtropical, deep	no		
Octopus	Haliphron atlanticus	Octopus			LC	circumglobal	no		
Octopus	Japetella diaphana	Octopus			LC	widespread, deep	no		
Octopus	Tremoctopus gracilis	Palmate octopus			LC	Indian Ocean, Indo- Pacific	no		
Octopus	Vitreledonella richardi	Octopus			LC	widespread, deep	no		
Orchid	Bulbophyllum Iongiscapum	Orchid	II			restricted			
Orchid	Bulbophyllum membranaceum	Orchid	II			Indo-west Pacific			
Orchid	Bulbophyllum pachyanthum	Orchid	II			restricted			
Orchid	Calanthe hololeuca	Orchid				restricted			
Orchid	Coelogyne lycastoides	Orchid				restricted			
Orchid	Dendrobium calcaratum	Orchid				restricted			
Orchid	Dendrobium tokai	Orchid				restricted			
Orchid	Phaius graeffei	Orchid				restricted			-
Orchid	Phreatia graeffei	Orchid				restricted			
Orchid	Taeniophyllum fasciola	Orchid	11		į.	Indo-west Pacific			
Owl	Tyto alba	Common barn-owl			LC		no		
Parrot	Prosopeia tabuensis	Maroon shining-parrot			LC		no		
Parrotfish	Calotomus carolinus	Starry-eye parrotfish			LC	widespread	no		
Parrotfish	Chlorurus frontalis	Tanfaced parrotfish			LC	Indo-Pacific, rare	no		
Parrotfish	Chlorurus microrhinus	Steephead parrotfish			LC	Indo-Pacific	no		
Parrotfish	Chlorurus spilurus	Bullethead parrotfish			LC	Indo-Pacific	no		
Parrotfish	Leptoscarus vaigiensis	Marbled parrotfish			LC	Indo-Pacific	no		
Parrotfish	Scarus altipinnis	Filament-fin parrotfish			LC	Indo-Pacific	no		
Parrotfish	Scarus forsteni	Forsten's parrotfish			LC	Indo-Pacific	no		-
Parrotfish	Scarus frenatus	Bridled parrotfish			LC	Indo-Pacific	no		
Parrotfish	Scarus globiceps	Globehead parrotfish			LC	Indo-Pacific	no		
Parrotfish	Scarus longipinnis	Highfin parrotfish			LC	southwest Pacific	no		
Parrotfish	Scarus niger	Swarthy parrotfish			LC	Indian Ocean, Indo- Pacific	no		
Parrotfish	Scarus pyrrostethus	Blue-banded parrotfish			LC	Indian Ocean, Indo- Pacific	no		
Parrotfish	Scarus rivulatus	Surf parrotfish			LC	Indo-Pacific	no		
Parrotfish	Scarus rubroviolaceus	Redlip parrotfish			LC	Indian Ocean, Indo- Pacific	no		
Parrotfish	Scarus tricolor	Tricolour parrotfish			LC	Indo-Pacific	no		
Pearleye	Benthalbella infans	Zugmeyer's pearleye			LC	circumglobal, deep	no		
Pearleye	Scopelarchoides danae	Pearleye			LC	circumglobal, deep	no		
Pearleye	Scopelarchus analis	Blackbelly pearleye			LC	circumglobal, deep	no		
Pearleye	Scopelarchus guentheri	Staring pearleye			LC	circumtropical, subtropical	no		
Petrel	Pterodroma nigripennis	Black-winged petrel			LC	176000000	yes		
Petrel	Pterodroma heraldica	Herald petrel			LC	91000000	yes		
Petrel	Pterodroma alba	Phoenix petrel			EN	28800000	yes		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Petrel	Pterodroma parkinsoni	Black petrel		II	VU	54300000	yes		
Pintail	Anas acuta	Northern pintail			LC	69100000	yes		
Pipefish	Choeroichthys cinctus	Barred shortbody pipel	fish		LC	western Pacific	no		
Pipefish	Cosmocampus maxweberi	Maxweber's pipefish			LC	Indo-Pacific	no		
Pipefish	Solenostomus paradoxus	Ornate ghost pipefish		2	LC	Indo-Pacific	no		
Pipefish	Syngnathoides biaculeatus	Alligator pipefish			DD	widespread	no		
Plover	Arenaria interpres	Ruddy turnstone		П	LC	27600000	yes		
Plover	Calidris acuminata	Sharp-tailed sandpiper	· II		LC	667000	yes		-
Plover	Pluvialis fulva	Pacific golden plover	Ш		LC	>20000	yes		
Plover	Limosa lapponica	Bar-tailed godwit		Ш	NT	9050000	yes		
Pufferfish	Arothron hispidus	Whitespotted puffer			LC	widespread	no		
Pufferfish	Arothron manilensis	Narrowlined puffer			LC	Indo-west Pacific	no		
Pufferfish	Arothron meleagris	Guineafowl puffer			LC	widespread	no		-
Pufferfish	Arothron nigropunctatus	Black-spotted puffer			LC	Indo-Pacific	no		-
Pufferfish	Arothron stellatus	Star puffer			LC	widespread	no		-
Pufferfish	Canthigaster amboinensis	Canthigaster amboiner	nsis		LC	widespread	no		-
Pufferfish	Canthigaster axiologus	Pufferfish		-	LC	Indo-Pacific	no		-
Pufferfish	Canthigaster bennetti	Bennet's pufferfish			LC	widespread	no		
Pufferfish	Canthigaster janthinoptera	Honeycomb toby		-	LC	widespread	no		-
Pufferfish	Canthigaster valentini	Blacksaddled toby			LC	widespread	no		-
Pufferfish	Chilomycterus reticulatus	Fewspined porcupinefi	sh		LC	circumtropical	no		
Pufferfish	Diodon eydouxi	Pelagic porcupinefish			LC	circumglobal	no		-
Pufferfish	Diodon holocanthus	Balloon porcupinefish			LC	circumglobal	no		-
Pufferfish	Diodon hystrix	Spotfish porcupinefish			LC	circumtropical	no		-
Pufferfish	Lagocephalus lagocephalus	Oceanic puffer			LC	widespread	no		-
Pufferfish	Lagocephalus sceleratus	Sivercheeked toadfish			LC	widespread	no		-
Pufferfish	Sphoeroides pachygaster	Blunthead pufferfish			LC	circumglobal	no		
Pufferfish	Takifugu oblongus	Oblong blow fish		2 	LC	Indian Ocean, Indo- Pacific	no		
Rabbitfish	Siganus argenteus	Forktail rabbitfish		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LC	Indo-west Pacific	no		-
Rabbitfish	Siganus doliatus	Barred rabbitfish			LC	western Pacific	no		
Rabbitfish	Siganus puellus	Masked rabbitfish			LC	Indo-west Pacific	no		
Rabbitfish	Siganus punctatus	Gold-spotted rabbitfish			LC	Indo-west Pacific	no		-
Rabbitfish	Siganus spinus	Mottled rabbitfish			LC	western Pacific	no		-
Ray	Manta alfredi	Reef mata ray	II		VU		yes		
Remora	Echeneis naucrates	Remora			LC	circumtropical	no		
Remora	Phtheirichthys lineatus	Slender suckerfish			LC	circumglobal	no		-
Remora	Remora australis	Whale remora			LC	circumtropical, subtropical	no		
Remora	Remora osteochir	Marlin suckerfish			LC	circumtropical, subtropical	no		
Remora	Remora remora	Common remora			LC	circumtropical, subtropical	no		
Ribbonfish	Desmodema polystictum	Polkadot ribbonfish			LC	circumglobal, deep, rare	no		-
Ribbonfish	Zu cristatus	Scalloped ribbonfish			LC	circumglobal, deep	no		
Ridgehead	Melamphaes longivelis	Ridgehead			DD	widespread, deep	no		
Ridgehead	Melamphaes polylepis	Ridgehead			DD	circumtropical, deep	no		
Ridgehead	Melamphaes simus	Ridgehead			LC	circumglobal, deep	no		-

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km²)	Migrant	Shark NPOA	UNCLOS
Ridgehead	Poromitra crassiceps	Crested bigscale			LC	widespread, deep	no		
Ridgehead	Poromitra megalops	Ridgehead			DD	widespread, deep	no		
Ridgehead	Scopeloberyx opisthopterus	Ridgehead			LC	widespread, deep	no		
Ridgehead	Scopeloberyx robustus	Longjaw bigscale			DD	circumtropical, subtropical, deep	no		
Rudderfish	Centrolophus niger	Rudderfish			LC	widespread, deep	no		
Sabretooth fish	Odontostomops normalops	Sabretooth fish	-		LC	widespread, deep	no	2	
Sailfish	Istiophorus platypterus	Sailfish			LC	widespread	yes		I
Sandburrower	Limnichthys fasciatus	Barred sandburrower	à		LC	south Pacific	no		
Sandburrower	Limnichthys nitidus	Donaldson's sandburro	wer		LC	Indo-Pacific	no		
Sawtooth eel	Stemonidium hypomelas	Black sawtooth eel			LC	Pacific, deep	no		
Scat	Scatophagus argus	Spotted scat			LC	Indian Ocean, Indo- Pacific	no		
Scorpionfish	Caracanthus maculatus	Spotted coral croucher			LC	Indo-west Pacific	no		
Scorpionfish	Caracanthus unipinna	Pygmy coral croucher			LC	Indo-west Pacific	no		
Scorpionfish	Scorpaenoides albaiensis	Splitfin scorpionfish			LC	Indo-west Pacific	no		
Scorpionfish	Scorpaenoides guamensis	Guam scorpionfish			LC	Indo-west Pacific	no		
Scorpionfish	Scorpaenoides hirsutus	Hairy scorpionfish			LC	Indian Ocean, Indo- Pacific	no	2	
Scorpionfish	Scorpaenoides parvipinnis	Shortfinned scorpionfisl	ו		LC	Indo-west Pacific	no		
Scorpionfish	Sebastapistes fowleri	Dwarf scorpionfish			LC	Indo-west Pacific	no	-	-
Scorpionfish	Sebastapistes mauritiana	Spineblotch scorpionfis	h		LC	Indo-west Pacific	no		
Scorpionfish	Setarches guentheri	Deepwater scorpionfish			LC	circumglobal, deep	no		
Scorpionfish	Taenianotus triacanthus	Leaf scorpionfish			LC	Indo-Pacific	no		
Sea cucumber	Holothuria fuscogilva	White teatfish			VU	Indian Ocean, Indo- Pacific	no		
Sea snake	Pelamis platura	Yellow-bellied sea snak	e		LC	Indian Ocean, Indo- Pacific	no		
Sea turtle	Chelonia mydas	Green turtle	I	1/11	EN	circumglobal	yes		
Sea turtle	Eretmochelys imbricata	Hawksbill turtle	I	1/11	CR	circumtropical and subtropical	yes		
Sea turtle	Dermochelys coriacea	Leatherback turtle	I	1/11	VU	circumglobal	yes		
Sea turtle	Caretta caretta	Loggerhead turtle	I	1/11	VU	circumglobal, temperate, subtropical	yes		
Seagrass	Halodule uninervis	Seagrass			LC	Indo-Pacific	no		
Seagrass	Halophila ovalis	Seagrass			LC	Indo-Pacific	no		
Seagrass	Syringodium isoetifolium	Seagrass			LC	Indo-Pacific	no		
Seahorse	Hippocampus histrix	Spiny seahorse			VU		no		
Seahorse	Hippocampus kuda	Spotted seahorse			VU		no		
Shark	Carcharhinus longimanus	Oceanic whitetip shark	11		VU		no	WCPO shark	I
Shark	Sphyrna lewini	Scalloped hammerhead	11		EN		yes	WCPO shark	I
Shark	Carcharodon carcharias	Great white shark	11	1/11	VU	cosmopolitan, temperate	yes	WCPO shark	I
Shark	Isurus oxyrinchus	Shortfin mako		II	VU	circumglobal, temperate, tropical	yes	WCPO shark	I
Shark	Rhincodon typus	Whale shark	II	II	VU	cosmopolitan, tropical, warm temperate	yes	WCPO shark	I
Shark	Prionace glauca	Blue shark			NT	widespread	no	WCPO shark	I

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Shark	Stegostoma fasciatum	Zebra shark			EN	widespread	no		
Shark	Coryphaena hippurus	Whitetip reef shark			NT	Indo-Pacific	no	I	
Shark	Carcharhinus falciformis	Silky shark	II	II	NT	circumglobal	yes	WCPO shark	I
Shark	Alopias vulpinus	Common thresher shark	II	II	VU	circumglobal	yes	WCPO shark	I
Shark	Sphyrna zygaena	Smooth hammerhead	II		VU		no	WCPO shark	I
Shearwater	Ardenna pacifica	Wedge-tailed shearwat	er		LC	16000000	yes		
Shearwater	Ardenna carneipes	Flesh-footed shearwate	er		NT	188000000	yes		
Shearwater	Puffinus bailloni	Tropical shearwater			LC	94600000	yes		
Slickhead	Talismania antillarum	Antillean slickhead			LC	circumglobal, deep	no		-
Slipper lobster	Parribacus caledonicus	Caledonian mitten lobst	ter		LC	Indo-west Pacific	no		
Snake mackerel	Diplospinus multistriatus	Striped escolar			LC	circumtropical	no		
Snake mackerel	Gempylus serpens	Snake mackerel			LC	circumtropical	no		
Snake mackerel	Nealotus tripes	Black snake mackerel			LC	widespread	no		
Snake mackerel	Promethichthys prometheus	Promethean escolar			LC	circumtropical	no		
Snaketooth	Kali kerberti	Snaketooth			LC	widespread, deep	no		
Snaketooth	Pseudoscopelus altipinnis	Snaketooth			LC	circumglobal, deep	no		
Snapper	Aphareus furca	Small-toothed jobfish			LC	widespread	no		
Snapper	Aphareus rutilans	Rusty jobfish			LC	widespread	no		
Snapper	Aprion virescens	Green jobfish			LC	widespread	no		-
Snapper	Etelis carbunculus	Deepwater red snapper	r		LC	widespread, deep	no		
Snapper	Etelis coruscans	Deepwater longtail red	snapper	-	LC	Indo-Pacific	no		
Snapper	Lutjanus argentimaculatus	Mangrove jack			LC	Indo-Pacific	yes		
Snapper	Lutjanus bohar	Red bass			LC	Indo-west Pacific	no		
Snapper	Lutjanus fulviflamma	Blackspot snapper			LC	Indo-Pacific	no		
Snapper	Lutjanus fulvus	Blacktail snapper			LC	Indo-Pacific	no		-
Snapper	Lutjanus kasmira	Bluebanded snapper			LC	Indo-Pacific	no		
Snapper	Lutjanus monostigma	Onespot snapper			LC	Indo-Pacific	no		
Snapper	Lutjanus quinquelineatus	Five-lined snapper			LC	Indo-Pacific	no		
Snapper	Lutjanus rufolineatus	Golden-lined snapper			LC	western Pacific	no		
Snapper	Lutjanus russellii	Russell's snapper			LC	western Pacific	no		-
Snapper	Macolor niger	Black and white snappe	ər	-	LC	Indo-Pacific	no		-
Snapper	Paracaesio sordida	Blue snapper			LC	Indo-Pacific	no		-
Snapper	Paracaesio xanthura	Yellowtail blue snapper			LC	Indo-Pacific	no		
Snapper	Parapristipomoides squamimaxillaris	Scalemouth jobfish			LC	restricted	no		
Snapper	Pristipomoides argyrogrammicus	Ornate jobfish			LC	Indo-Pacific	no		
Snapper	Pristipomoides auricilla	Goldflag jobfish			LC	Indo-Pacific	no		
Snapper	Pristipomoides filamentosus	Crimson jobfish			LC	Indo-Pacific	no		
Snapper	Pristipomoides multidens	Goldbanded jobfish		-	LC	Indo-Pacific	no		
Snapper	Pristipomoides sieboldii	Lavender jobfish			LC	Indo-Pacific	no		
Snapper	Pristipomoides zonatus	Oblique-banded jobfish			LC	Indo-Pacific	no		
Snipe eel	Nemichthys curvirostris	Spotted snipe eel			LC	widespread, deep	no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Snipe eel	Nemichthys scolopaceus	Slender snipe eel			LC	circumglobal, deep	yes		
Soldierfish	Myripristis berndti	Bigscale soldierfish			LC	widespread	no		
Soldierfish	Myripristis hexagona	Blacktip soldierfish			LC	Indo-Pacific, Pacific	no		
Soldierfish	Myripristis kuntee	Shoulderbar soldierfish			LC	Indo-Pacific	no		
Soldierfish	Myripristis murdjan	Pinecone soldierfish			LC	Indo-Pacific, Pacific	no		
Soldierfish	Myripristis randalli	Randall's soldierfish			LC	restricted	no		
Soldierfish	Plectrypops lima	Shy soldierfish			LC	Indian Ocean, Indo- Pacific	no		
Sole	Pardachirus pavoninus	Peacock sole			LC	Indo-Pacific	no		
Sole	Soleichthys heterorhinus	Banded sole			LC	Indo-west Pacific	no		
Spinyfin	Diretmus argenteus	Siver spinyfin			LC	circumglobal, deep, uncommon	no		
Sprat	Spratelloides gracilis	Silver sprat			LC	widespread	no		
Squid	Ommastrephes bartramii	Squid			LC	circumglobal, temperate, subtropical	yes		
Squid	Sthenoteuthis oualaniensis	Squid			LC	circumtropical	no		
Squid	Thysanoteuthis rhombus	Diamondback squid	ā		LC	circumtropical, subtropical	no		
Squirrelfish	Neoniphon argenteus	Clearfin squirrelfish			LC	Indo-Pacific	no		
Squirrelfish	Neoniphon opercularis	Blackfin squirrelfish			LC	Indo-west Pacific	no		
Squirrelfish	Neoniphon sammara	Spotfin squirrelfish			LC	Indo-Pacific	no		
Squirrelfish	Ostichthys kaianus	Deepwater squirrelfish			LC	widespread, deep	no		
Squirrelfish	Sargocentron caudimaculatum	Tailspot squirrelfish			LC	Indo-Pacific	no		
Squirrelfish	Sargocentron diadema	Crowned squirrelfish			LC	Indian Ocean, Indo- Pacific	no		
Squirrelfish	Sargocentron lepros	Spiny squirrelfish			LC	Indo-Pacific	no		
Squirrelfish	Sargocentron punctatissimum	White-spotted squirrelfi	sh		LC	Indo-Pacific	no		
Squirrelfish	Sargocentron rubrum	Redcoat squirrelfish			LC	Indian Ocean, Indo- Pacific	no		
Squirrelfish	Sargocentron spiniferum	Spinecheek squirrelfish			LC	Indo-west Pacific	no		
Squirrelfish	Sargocentron tiere	Blue-lined squirrelfish			LC	Indo-west Pacific	no		
Stargazer	Genyagnus monopterygius	spotted stargazer			LC	restricted	no		
Stingray	Neotrygon kuhlii	Bluespotted stingray			LC	widespread	no		
Sunfish	Ranzania laevis	Dwarf sunfish			LC	circumtropical	no		
Surgeonfish	Acanthurus achilles	Achilles tang			LC	widespread, uncommon	no		
Surgeonfish	Acanthurus albipectoralis	_			LC	Indo-Pacific	no		
Surgeonfish	Acanthurus blochii	Ringtail surgeonfish			LC	Indian Ocean, Indo- Pacific, Pacific	no		
Surgeonfish	Acanthurus dussumieri	Eyestripe surgeonfish			LC	widespread	no		
Surgeonfish	Acanthurus guttatus	Whitespotted surgeonfi	sh		LC	widespread	no		
Surgeonfish	Acanthurus lineatus	Striped surgeonfish			LC	Indo-west Pacific, Pacific	no		
Surgeonfish	Acanthurus mata	Elongate surgeonfish			LC	widespread	no		
Surgeonfish	Acanthurus nigrofuscus	Brown surgeonfish			LC	widespread	no		
Surgeonfish	Acanthurus olivaceus	Orange band surgeonfi	sh		LC	widespread	no		
Surgeonfish	Acanthurus pyroferus	Mimic surgeonfish			LC	widespread	no		
Surgeonfish	Acanthurus thompsoni	Thompson's surgeonfis	h		LC	widespread	no		
Surgeonfish	Acanthurus triostegus	Convict tang			LC	widespread	no		
Surgeonfish	Ctenochaetus binotatus	Twospot bristletooth			LC	Indo-Pacific			
Surgeonfish	Ctenochaetus binotatus Ctenochaetus hawaiiensis	•			LC	Pacific	no no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km²)	Migrant	Shark NPOA	UNCLOS
Surgeonfish	Ctenochaetus striatus	Striped bristletooth			LC	widespread	no		
Surgeonfish	Naso annulatus	Whitemargin unicornfis	sh		LC	Indo-Pacific	no		
Surgeonfish	Naso brevirostris	Palefin unicornfish			LC	widespread	no		
Surgeonfish	Naso caesius	Gray unicornfish			LC	western Pacific	no		
Surgeonfish	Naso hexacanthus	Sleek unicornfish			LC	Indo-Pacific	no		
Surgeonfish	Naso lituratus	Orangespine unicornfis	sh		LC	Indo-Pacific	no		
Surgeonfish	Naso unicornis	Bluespine unicornfish			LC	Indo-Pacific	no		
Surgeonfish	Paracanthurus hepatus	Blue tang			LC	Indian Ocean, Indo- Pacific	no		
Surgeonfish	Zebrasoma scopas	Brushtail tang			LC	Indian Ocean, Indo- Pacific	no		
Surgeonfish	Zebrasoma veliferum	Sailfin tang			LC	Indo-west Pacific	no		
Tapertail	Radiicephalus elongatus	Tapertail			LC	circumglobal, deep	no		
Tarpon	Megalops cyprinoides	Indo-Pacific tarpon			DD	Indo-west Pacific	yes		
Tattler	Tringa incana	Wandering tattler		Ш	LC	2450000	yes		
Telescopefish	Gigantura elegans	Indian telescopefish			LC	widespread	no		
Tern	Anous stolidus	Brown noddy			LC	215000000	no		
Tern	Anous tenuirostris	Lesser noddy	1		LC	19500000	no		
Tern	Anous minutus	Black noddy			LC	164000000	no		
Tern	Procelsterna albivitta	Grey noddy			LC	21600000	no		
Tern	Gygis alba	Common white tern	1		LC	137000000	no		
Tern	Onychoprion fuscatus	Sooty tern			LC	195000000	yes		
Tern	Sterna sumatrana	Black-naped tern			LC	61800000	yes		
Tern	Thalasseus bergii	Lesser crested tern			LC	142000000	yes		
Threadfin bream	Scolopsis bilineata	Two-lined monocle bre	am		LC	Indian Ocean, Indo- Pacific	no		
Tinselfish	Xenolepidichthys dalgleishi	Spotted tinselfish			LC	circumglobal, deep	no		
Toothed seadevil	Neoceratias spinifer	Toothed seadevil			LC	circumglobal, deep	no		
Trevally	Alectis ciliaris	African Pompano			LC	circumtropical	no		
Trevally	Carangoides coeruleopinnatus	Bluefin kingfish			LC	widespread	no		
Trevally	Carangoides ferdau	Banded trevally			LC	widespread	no		
Trevally	Carangoides fulvoguttatus	Yellow-spotted trevally			LC	widespread	no		
Trevally	Carangoides orthogrammus	Island jack			LC	Indo-Pacific	no		
Trevally	Caranx ignobilis	Giant trevally	.5		LC	widespread	no		
Trevally	Caranx lugubris	Black trevally			LC	circumtropical	no		
Trevally	Caranx melampygus	Bluefin trevally			LC	Indo-Pacific	no		
Trevally	Caranx sexfasciatus	Bigeye trevally			LC	Indo-west Pacific	no		
Trevally	Decapterus macarellus	Mackerel scad			LC	circumtropical	no		
Trevally	Decapterus macrosoma	Shortfin scad			LC	Indo-Pacific	no		
Trevally	Decapterus tabl	Roughear scad			LC	circumtropical	no		
Trevally	Elegatis bipinnulata	Rainbow runner			LC	circumtropical	no		
Trevally	Megalaspis cordyla	Torpedo scad			LC	Indo-west Pacific	no		
Trevally	Naucrates ductor	Pilotfish			LC	circumtropical	no		
Trevally	Scomberoides lysan	Doublespotted queenfi	sh		LC	Indo-Pacific	no		
Trevally	Selar crumenophthalmus	Bigeye scad			LC	circumglobal	no		
Trevally	Seriola dumerilii	Greater amberjack			LC	circumglobal	no		
Trevally	Seriola rivoliana	Longfin yellowtail			LC	circumtropical	no		

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Trevally	Trachinotus bailloni	Small spotted dart			LC	Indo-west Pacific	no		
Trevally	Trachinotus blochii	Snubnose pompano			LC	Indian Ocean, Indo- Pacific	no		
Trevally	Uraspis helvola	Whitetongue jack			LC	Indo-Pacific	no		
Triggerfish	Sufflamen fraenatum	Bridled triggerfish			LC	Indian Ocean, Indo- Pacific	no		
Triplefin	Ceratobregma helenae	Helena's triplefin			LC	Pacific	no		
Triplefin	Enneapterygius atrogulare	Blackthroat triplefin			LC	restricted	no		
Triplefin	Enneapterygius rufopilus	Redcap triplefin			LC	restricted	no		
Triplefin	Enneapterygius triserialis	Whitespotted triplefin			LC	restricted	no		
Triplefin	Norfolkia thomasi	Thomas' triplefin			LC	restricted	no		
Triplefin	Ucla xenogrammus	Largemouth triplefin			LC	Indo-Pacific	no		
Tropicbird	Phaethon rubricauda	Red-tailed tropicbird			LC	95100000	yes		-
Tropicbird	Phaethon lepturus	White-tailed tropicbird			LC	16100000	yes		-
Tuna	Thunnus albacares	Yellowfin tuna			NT	worldwide	yes		I
Tuna	Euthynnus affinis	Little tuna			LC	Indo-west Pacific	yes		I
Tuna	Gymnosarda unicolor	Dogtooth tuna			LC	Indo-Pacific	yes		-
Tuna	Thunnus alalunga	Albacore			NT	circumglobal	yes		1
Tuna	Thunnus obesus	Bigeye tuna	-		VU	circumtropical	yes		1
Tuna	Katsuwonus pelamis	Skipjack tuna			LC	circumglobal	yes		1
Viperfish	Chauliodus sloani	Sloan's viperfish			LC	circumglobal, deep	no		
Waryfish	Ahliesaurus berryi	Waryfish			LC	widespread, deep	no		-
Whale	Megaptera novaeangliae	Humpback whale			LC	cosmopolitan	yes		1
Whale	Kogia sima	Dwarf sperm whale	II	•	DD		unknown		
Whale	Balaenoptera edeni	Bryde's whale		11	DD	circumglobal, warm	uncertain		
Whale	Feresa attenuata	Pygmy killer whale	II		DD	circumgiobal, warm	no		· ·
Whale	Kogia breviceps	Pygmy sperm whale	 		DD		no		
Whale	Mesoplodon densirostris	Blainville's beaked	 		DD		no		-
	•	whale							-
Whale	Mesoplodon ginkgodens	Ginkgo-toothed beaked whale	 		DD		no		
Whale	Orcinus orca	Killer whale		II	DD	circumglobal	no		1
Whale	Physeter macrocephalus	Sperm whale		1/11	VU	circumglobal	no		I
Whale	Pseudorca crassidens	Flase killer whale			DD		no		I
Whale	Ziphius cavirostris	Cuvier's beaked whale	II	I	LC	circumglobal	no		I
Whalefish	Barbourisia rufa	Redvelvet whalefish			LC	circumglobal, deep, rare	no		
Whalefish	Ditropichthys storeri	Doublekeeled whalefish	I		DD	circumglobal, deep	no		
Whalefish	Rondeletia loricata	Redmouth whalefish			LC	circumglobal, deep	no		
Wrasse	Cheilinus undulatus	Humphead wrasse	11		EN	no			
Wrasse	Anampses caeruleopunctatus	Bluespotted wrasse			LC	Indian Ocean, Indo- Pacific	no		
Wrasse	Anampses femininus	Feminine wrasse			LC	Indo-Pacific, Pacific	no		
Wrasse	Anampses melanurus	Blacktailed wrasse			LC	Indo-west Pacific	no		
Wrasse	Anampses neoguinaicus	Black-banded wrasse			LC	Indo-west Pacific	no		
Wrasse	Anampses twistii	Yellowbreasted wrasse			LC	widespread	no		
Wrasse	Bodianus anthioides	Lyre-tail hogfish			LC	Indo-Pacific	no		
Wrasse	Bodianus axillaris	Turncoat hogfish			LC	Indo-Pacific	no		
Wrasse	Bodianus dictynna	Hogfish			LC	Indo-west Pacific	no		
Wrasse	Bodianus loxozonus	Blackfin hogfish	5		LC	Indo-Pacific	no		
Wrasse	Bodianus mesothorax	Yellowspotted hogfish			LC	Indo-Pacific	no		-

Category	Scientific Name	Common Name	CITES	CMS	IUCN Red List	Range (km ²)	Migrant	Shark NPOA	UNCLOS
Wrasse	Bodianus perditio	Goldspot hogfish			LC	Indo-west Pacific	no		
Wrasse	Cheilinus chlorurus	Floral wrasse			LC	Indo-Pacific	no		
Wrasse	Cheilio inermis	Cigar wrasse			LC	widespread	no		
Wrasse	Cirrhilabrus punctatus	Dotted wrasse			LC	restricted	no	0	
Wrasse	Cirrhilabrus scottorum	Scott's wrasse			LC	Indo-Pacific	no		
Wrasse	Coris aygula	Humphead wrasse			LC	Indo-Pacific	no		
Wrasse	Coris batuensis	Schroeder's wrasse			LC	Indo-Pacific	no		-
Wrasse	Coris dorsomacula	Spotfin wrasse			LC	Indo-Pacific	no		
Wrasse	Coris gaimard	Clown wrasse			LC	Indo-Pacific, Pacific	no		
Wrasse	Cymolutes praetextatus	Knife razorfish			LC	Indo-Pacific	no		
Wrasse	Gomphosus varius	Bird wrasse			LC	Indo-Pacific	no	0	
Wrasse	Halichoeres biocellatus	Biocellate wrasse			LC	Indo-west Pacific	no		
Wrasse	Halichoeres chrysus	Golden wrasse			LC	Indo-west Pacific	no		
Wrasse	Halichoeres hartzfeldii	Orange-lined wrasse)		LC	western Pacific	no		
Wrasse	Halichoeres hortulanus	Checkerboard wrass	е		LC	Indo-Pacific	no	0	
Wrasse	Halichoeres margaritaceus	Pearlspot wrasse			LC	Indo-Pacific	no		
Wrasse	Halichoeres marginatus	Dusky wrasse			LC	Indo-Pacific	no		
Wrasse	Halichoeres prosopeion	Twotone wrasse			LC	Indo-west Pacific	no		-
Wrasse	Halichoeres trimaculatus	Three-spot wrasse			LC	Indo-Pacific	no		
Wrasse	Hemigymnus fasciatus	Banded thicklip wras	se		LC	Indo-Pacific	no		
Wrasse	Hemigymnus melapterus	Blackedge thicklip w	rasse		LC	Indo-Pacific	no		
Wrasse	Hologymnosus annulatus	Ringed wrasse			LC	Indo-Pacific	no	2	
Wrasse	Hologymnosus doliatus	Narrow-banded wras	se		LC	Indo-Pacific	no		
Wrasse	Iniistius aneitensis	Pale razorfish			LC	Indo-Pacific	no		
Wrasse	Iniistius celebicus	Bronzespot razorfish	1		LC	Indo-west Pacific	no		
Wrasse	Iniistius pavo	Peacock razorfish			LC	Indo-Pacific	no	0	
Wrasse	Labrichthys unilineatus	Tubelip wrasse			LC	Indo-Pacific	no	0	
Wrasse	Labroides bicolor	Bicolor cleanerfish			LC	widespread	no		
Wrasse	Labroides dimidiatus	Cleaner wrasse			LC	Indo-Pacific	no		
Wrasse	Labroides rubrolabiatus	Redlip cleaner wrass	Se		LC	western and central Pacific	no		
Wrasse	Labropsis australis	Southern tubelip			LC	restricted	no		
Wrasse	Macropharyngodon kuiteri	Black leopard wrasse	e		LC	restricted	no		
Wrasse	Macropharyngodon meleagris	Blackspotted wrasse)		LC	Indo-Pacific	no		
Wrasse	Macropharyngodon negrosensis	Yellowspotted wrass	e		LC	Indo-Pacific	no		
Wrasse	Novaculichthys taeniorus	Rockmover wrasse			LC	widespread	no		
Wrasse	Oxycheilinus bimaculatus	Comettailed wrasse			LC	Indo-Pacific	no		
Wrasse	Oxycheilinus digramma	Cheeklined wrasse			LC	Indian Ocean, Indo- Pacific	no		
Wrasse	Oxycheilinus nigromarginatus	Blackmargin maori w	rasse		DD	restricted	no		

Marine and Coastal Biodiversity Management in Pacific Island Countries

