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INTRODUCTION

Isolation of many of the world’s most pristine coral
reefs has hampered our ability to thoroughly exam-
ine ecological interactions that underpin these com-
plex ecosystems in the absence of humans (Knowlton
& Jackson 2008). A notable attribute of food webs
from many remote coral reef ecosystems is their
inverted structure (Friedlander & DeMartini 2002,
Stevenson et al. 2007, Sandin et al. 2008, Friedlander
et al. 2010), whereby long-lived apex predators con-
stitute a disproportionate amount of the fish biomass

and represent long-term carbon storage sinks with
slow turnover rates (Rooney et al. 2006). These char-
acteristics suggest that apex predators play a critical
role in structuring coral reef ecosystems. Yet, em -
pirical evidence for linked trophic interactions in
their absence remains limited, and stems mainly
from comparing coral reefs inside no-take marine
protec ted areas (MPAs) with reefs that are fished
at varying intensities (Mumby et al. 2006, 2007,
McClanahan et al. 2007, Kellner et al. 2010). Clearly,
MPAs can be effective fisheries management tools
although even longstanding MPAs do not typically
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support large populations of influential top preda-
tors, such as sharks, that are found on remote reefs
(McClanahan et al. 2007, Knip et al. 2012). As a
result, deeper insight into the consequences of apex
predator removal on coral reefs remains more theo-
retical than empirical.

Existing studies highlight an unintuitive, positive
relationship between herbivore assemblages that
are dominated by large-bodied species (i.e. species
of surgeonfishes and parrotfishes that attain large
re productive and adult sizes) and the abundance of
several piscivore predators. This relationship has
been found along gradients of both fishing pressure
(Mumby et al. 2006, Kellner et al. 2010) and reha -
bilitation following fishing closure (McClanahan
et al. 2007). Consistent find ings support that well-
founded, allometric relationships likely govern pre -
dator-to-prey, body-size ratios for coral reef ecosys-
tems, and may serve as informative proxies of food
chain interaction strengths (Emmerson & Raffaelli
2004, Woodward et al. 2005). Human influences
such as fishing pressure, which are known to act
concomitantly across both predator and prey popu-
lations on coral reefs, may oppose the default inter-
actions observed in ‘natural’ ecosystems. In light of
this viewpoint, the present study revisits a funda-
mental question of coral reef ecology: What are the
expected consequences of trophic ‘downgrading’ on
coral reefs?

Food web models show that high apex predator
abundances enhance the diversity of food chains that
can stably coexist through time because they faci -
litate the distribution of high and low interaction
strengths across a network of linkages (Bascompte et
al. 2005, Rooney et al. 2006, Gross et al. 2009). It fol-
lows that trophic downgrading, or the removal of
higher trophic levels, destabilizes food webs directly
through dampening predator–prey cycles, but also
indirectly through altered prey–resource interaction
strengths in the absence of apex predators (Bas-
compte et al. 2005, Rooney et al. 2006, Estes et al.
2011, Rooney & McCann 2011). Shifting food web
dynamics have been shown to facilitate the establish-
ment of less desirable and more opportunistic eco -
logical states through a variety of cascading inter -
actions (Estes et al. 2011). For coral reefs, this
ultimately translates to fewer corals and calcifying
organisms, and more algal and heterotrophic growth
(Mumby et al. 2006, Nyström 2006). However, limited
insight exists to determine and quantify (1) key
trophic pathways, (2) how interaction strengths can
be measured, and (3) what metrics might portray
overall ecosystem stability. 

The present study examined coral reef assem-
blages, trophic interactions, and indicators of food
web stability across a remote (Rongelap) and densely
populated (Majuro) atoll in the Republic of the Mar-
shall Islands (RMI). We first characterized expected
distinctions in coral reef assemblages between the
atolls to establish a foundation for examining the
degradation process. Relationships between species
abundances, diversity patterns, and human presence
were then quantified. The relative abundances of
species were used to depict food chain interaction
strengths, and multivariate measures of hetero gene -
ity were used to depict food chain diversity because
they represent useful indicators of food web stability
that could be examined along our study gradient
(Neutel et al. 2007, Rooney & McCann 2011). Lastly,
we performed structural equation modeling (i.e. path
analysis) to test whether  support existed for linked
trophic interactions across humans, apex predators,
herbivores, benthic substrates, and coral assem-
blages. Our approach provides a broader perspective
for interpreting how key ecosystem drivers, humans
and apex predators, may influence ecological sta -
bility on (RMI) coral reefs, and offers a framework
to help determine thresholds required for ecosystem
sustainability.

MATERIALS AND METHODS

Study region and sampling design

The RMI extends across a large portion of the cen-
tral Pacific Ocean, including 29 coral atolls with
lagoons ranging in size from 10 to over 2000 km2

(Fig. 1). Given their geographic isolation and low
human population, abundant marine resources have
been reported throughout many of the remote atolls
(Beger et al. 2008). Yet, as the fisheries sector con -
tinues to develop and remote societies trade more
of their resources for economic prosperity, improved
monitoring and management is needed to ensure
sustainability. To date, the existing doctrine sur-
rounding RMI reefs describes the region in terms of
species composition, distribution of macrofauna, and
perceived condition (Wells 1954, Hiatt & Strasburg
1960, Pinca et al. 2005, Beger et al. 2008, Richards et
al. 2008).

Rongelap and Majuro Atolls were selected for
study based upon their strong differences in human
presence. Majuro is the capitol of the RMI with 25400
residents. Population density is highest in Delap, the
urban center, and generally decreases with distance
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from town. Both nutrient enrichment and high fishery
pressure are perceived concerns on Majuro Atoll, as
residents place a strong reliance upon the urban cen-
ter and marine resources for livelihoods and income
generation (Pinca et al. 2005, Beger et al. 2008). In
contrast, Rongelap Atoll has remained largely unin-
habited for 57 yr due to impacts associated with
atomic bomb testing at Bikini Atoll in 1954 (Simon
1997). Currently, major clean-up efforts have been
completed, and a resettlement process has begun. A
population of approximately 40 construction workers
resides on Rongelap while they are rebuilding the lo-
cal infrastructure. These workers supplement their
food imports with fresh reef fish caught primarily by
hook-and-line, throw-net, and both day and night -
time spearfishing, exerting an unknown amount of
fishing pressure on Rongelap’s reefs. Land-based
 pollution is considered minimal given the sparse
 human population and limited infrastructure.

Within each atoll, 10 sites were established across
patch, channel, and outer reefs, at similar scales of
investigation (~300 km2; Fig. 1). Coral, fish, and ben-
thic assemblages were quantitatively assessed at the
5 to 8 m depth contour, along replicate 25 m transect
lines (n = 6 to 8 transect lines, depending upon habi-
tat availability, as patch-reef size was limited at 2
sites). Coral species richness and abundances were

estimated from ten 1 × 1 m quadrats that were tossed
haphazardly at equal intervals along the transect
lines. Within each, all corals were identified to the
species level, and the maximum diameter and the
diameter perpendicular to the maximum were re -
corded for each discrete colony. Coral taxonomy fol-
lowed Veron (2000). For analysis purposes, corals
were also classified by growth form as encrusting,
massive, low-relief, and high-relief. High-relief
corals were defined by table-and-plate, staghorn,
prostrate, and arborescent growth forms. Low-relief
corals were defined by corymbose and compact-
columnar growth forms. From the measurements
taken, surface area was assumed considering colo -
nies were circular in nature. While the assumption of
circularity may introduce some bias for highly
branched species, this approach was consistent, and
represents the most idealized universal assumption.
Coral recruitment was estimated by the number of
juvenile (<5 cm) corals belonging to 3 major reef
building families that are predominantly broadcast
spawners: Acroporidae, Pocilloporidae, and Faviidae
(Baird et al. 2009). From these methods a total of 2988
coral colonies were measured, encompassing 33 ge -
nera and 141 species.

Fish assemblages were surveyed using a modified
stationary point count (SPC) methodology (Bohnsack
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& Bannerot 1986). Twelve replicate SPCs spaced at
15 to 20 m intervals were conducted at each site prior
to any transect-based work. For each SPC, all target
fish within a 5 m radius of the observer during a
3 min period were identified to the species level,
counted, and size estimated (to the nearest 5 cm).
Target fish were categorized as acanthurids, scarids,
serranids, carangids, labrids, lethrinids, lutjanids,
balistids, kyphosids, mullids, and holocentrids that
are known to be harvested. Sharks were also
included. Size estimates were used to calculate bio-
mass based on documented length-to-weight conver-
sion factors (www.fishbase.org). For some analyses,
species were grouped by trophic  category based
upon their reported diet (www.fishbase.org), and/or
family. For generating estimates of mean herbivore/
detritivore size at each site, all fish below the 10 cm
size bin were removed to avoid the potential in -
fluence of recruits. From these protocols, a total of
14680 target fish from 127 species and 24 families
were observed.

Benthic substrate abundances were estimated from
digital photographs that were taken at 1 m intervals
along the transect lines. For each photograph, the
substrate under 5 random points was assigned to a
pre-defined category using the freely available com-
puter software, Coral Point Count (Kohler & Gill
2006). These methods yielded a total of 125 data
points per transect and 500 to 1000 data points per
site, resulting in high site-level statistical confidence
(Houk & van Woesik 2006). The benthic categories
used for analysis were corals (typically genus level,
but enhanced to include functional groupings within
genera that constituted greater than 5% absolute
coverage, such as Acropora ‘tables’, ‘staghorn’, or
‘arborescent’), turf algae (less than 2 cm), macro -
algae (greater than 2 cm, to genus level if abund -
ant), fleshy coralline algae known to overgrow coral
(Peyssonnelia spp., Pneophyllum spp.) (Keats et al.
1997, Antonius 1999, 2001), crustose coralline algae,
sand, and other invertebrates (genus level if abun-
dant). Finally, while 10 sites were selected for inves-
tigation on each atoll, benthic data were only col-
lected from a subset of 7 on each atoll, due to
logistical considerations.

Data analyses

Data were first analyzed to describe the nature
and magnitude of coral and fish assemblages
between Majuro and Rongelap using standard mul-
tivariate techniques (PRIMER software package;

see Anderson et al. 2008 for methodology). Data
were aggregated at the site level, log-transformed,
and Bray-Curtis similarity matrices were generated
to define the ecological distances between each
pair of sites. Bray-Curtis similarity matrices were
calculated by:

S( j, k) = 1 − [Σ |Yij − Yik | / Σ (Yij + Yik)] (1)

where S represents the ecological similarity between
the 2 sites ( j and k), Σ (numerator) represents the
summation of the absolute differences in the abun-
dance of each species (Yi) at the 2 sites, and Σ
(denominator) represents the sum of the abundances
of species (Yi) at the 2 sites. Prior to examining inter-
atoll differences, tests of multivariate homogeneity
were conducted to determine if the Bray-Curtis simi-
larities were evenly distributed among both atolls
(PERMDISP tests). Significantly lower dispersion (i.e.
multivariate variance) was found for both fish and
coral assemblages on Rongelap (pseudo t-statistic
> 2.6, p < 0.05, PERMDISP, all assemblages). Given
non-homogeneous variances, and the desire to
explore variance structures on a similar standardized
scale, multivariate comparisons were made using
rank-transformed abundance data (ANOSIM tests),
and visualized using non-metric, multi-dimensional
sca ling (MDS) plots. Low stress values associated
with MDS plots (stress <0.25) suggest that the struc-
ture of multivariate datasets was accurately depicted
within 2-dimensional space. Spearman correlations
(r > 0.5) between individual species and the first 2
MDS-plot axes were used to highlight the species
that contributed most to the observed multivariate
trends. Given that Rongelap is nearly double the
size of Majuro, sites on Rongelap were centered
around the southwest sector of the atoll. To evaluate
potential spatial autocorrelation among sites, cor -
relations between geographic distances and Bray-
Curtis ecological distances were examined. No rela-
tionships existed for either atoll, suggesting sites
were sufficiently separated to avoid significant in -
fluences of geographic clustering.

Standard pairwise testing was conducted for sev-
eral components of the fish, benthic, and coral as -
semblages to build upon multivariate trends (t-tests,
Mann-Whitney U-tests if assumptions of normality or
homogeneity were not met following Box-Cox trans-
formations; Box & Cox 1964). For examining size-
class distributions of fishes and corals, Kolmogorov-
Smirnov (K-S) tests were preferentially used be cause
they explicitly test for differences between 2 sets of
cumulative frequency data.
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Multivariate heterogeneity

Multivariate heterogeneity was next compared
across and within the 2 atolls. We defined fish and
coral assemblage heterogeneity by the mean Bray-
Curtis difference between sites (inter-site hetero-
geneity) and the mean Bray-Curtis difference
between replicates within a site (intra-site hetero-
geneity). Reported above in Eq. (1), high Bray-Curtis
similarity values indicated that species abundances
were similarly distributed between sampling units
(either between sites or between replicates within a
site), while low values indicated less ecological simi-
larity and greater taxonomic isolation. MDS plots and
Spearman correlation analyses were used to visual-
ize the multivariate patterns as noted above. Stan-
dard pairwise testing was used to examine whether
inter-site and intra-site Bray-Curtis similarities dif-
fered between the atolls.

In order to exemplify the dependence of fish as -
semblage structure and biomass upon human pres-
ence, we conducted a series of regression analyses us-
ing distance from the sparse (40 people) human
population on Rongelap as the dependent variable.
First, intra-site fish assemblage heterogeneity was re-
gressed against distance from humans. Because
sharks were strong contributors to intra-site fish as-
semblage heterogeneity on Rongelap, we also re-
gressed shark abundances against distance from hu-
mans. Finally, as a transition into our results describing
linked trophic interactions, we also re gressed mean
herbivore/detritivore size (as a proxy of grazing po-
tential) against distance from humans. Regression
models were all inspected for independence and nor-
mality of residuals, and log-trans formations of shark
biomass were used to reduce skewness.

Linked trophic interactions

Structural equation modeling (i.e. path analysis)
was undertaken to investigate whether the co -
variance structure between apex predators, human
presence, herbivores/detritivores, benthic substra tes,
and coral assemblage dominance were linked in a
predictable fashion that could define a trophic cas-
cade. We used the package lavaan (Rosseel 2012) in
R (R Development Core Team 2005) to test whether
linked covariance structures were significantly diffe -
rent from independent counterparts. The trophic
linkages examined were predefined by the body of
knowledge describing ecological inter actions on
coral reefs: (1) apex predator biomass en hances

 herbivore/detritivore biomass and/or mean body size
(Graham et al. 2005, Mumby et al. 2006, McClana-
han et al. 2007), large herbivore/ detritivore popula-
tions increase calcifying benthic substrates (Mumby
et al. 2007, Lokrantz et al. 2008), and calcifying sub-
strates facilitate coral recruitment and survival
(Mumby et al. 2007, Houk et al. 2010), thus reducing
coral assemblage dominance (Houk & van Woesik
2010), (2) human presence reduces both apex pre -
dators and herbivores/ detritivores through fishing
(Myers et al. 2007, Ferretti et al. 2010), with similar
ensuing relationships to the benthic and coral assem-
blages, and (3) human presence directly reduces
favorable benthic substrates through the addition of
land-based pollution (Smith et al. 2010), with similar
ensuing relationships to coral assemblages (Fig. 2).
Human presence was calculated as (distance from
atoll’s human population center × human population)
+ (distance from nearest point of any human pre -
sence × human population in the localized vicinity).
Rongelap had a single population center so human
presence was calculated by the linear distance
from the sparse population multiplied by 40 people,
as noted above for regression models. Prior to
 conducting path analyses all variables were log-
transformed to account for skewness. Chi-square
tests and comparative fit indices (CFI) were used to
examine the degree of difference from independent
models, with chi-square values greater than 0.05 (i.e.
a poor fit with independent covariances) and CFI
indices near 1 suggesting significance. Second, root-
mean square errors (RMSE) were used to estimate
the difference between the mean covariance residu-
als, whereby values close to 0, with a cutoff of 0.05,
confirm significance.
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RESULTS

Expected differences in coral and fish species
abundance patterns were observed between the atolls
(ANOSIM R-statistic >0.55, p < 0.001; Fig. 3a,b). Bio-
mass of sharks, large-bodied piscivores, and inverte-
brate consumers was larger on the sparsely inhabited
atoll of Rongelap (Fig. 4 & Fig. S1 in the Supp lement
at www.int-res.com/articles/ suppl/ m488 p023 _ supp.
pdf). Accordingly, shark, grouper, and snapper bio-
mass had strongest correlations with the horizontal
axis of the MDS plot (Spearman’s r > 0.6; Fig. 3b).
Most notably, shark biomass was an order of magni-
tude higher on Rongelap compared to Majuro (mean

of 63.1 and 3.2 kg per SPC, respectively). In contrast,
small-bodied herbivore and detritivore surgeonfishes
doubled in numeric density and biomass on Majuro,
while parrotfishes were halved (p < 0.01, for pairwise
comparisons). These findings were highlighted by
significant reductions in 3 common  scraper-and-
excavator genera (Chlorurus spp., Hipposcarus spp.,
and Cetoscarus spp.), and an overall dominance of
fewer species (most notably the small  surgeonfish
Ctenochaetus cyano cheilus, but also 2 parrot fish,
Scarus rubroviolaceus and S. ghobban; ANO SIM R-
statistic = 0.45, p < 0.001; Fig. S2 in the Supplement).
In contrast, planktivore surgeonfishes were lower in
both numeric density (p < 0.001, t-test) and size on
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Majuro (p < 0.001, K-S test), mainly due to the
absence of Naso hexacanthus, N. brevirostris, and N.
annulatus.

In addition to compromised fish populations, in -
crea sed opportunistic, non-calcifying algal substra -
tes were found on Majuro (p < 0.01, t-test, ratio of
non-calcifying  versus calcifying substrates grouped;
Fig. S3 in the Supplement) where turf, fleshy
coralline, and macroalgae were more abundant, and
crustose coralline al gae was less abundant. Densities
of encrusting and massive coral species were similar
for both atolls (p > 0.05, t-tests), yet smaller colony
sizes existed on Majuro (p < 0.01, t-tests). High-relief
corals showed less overall difference in mean abun-
dance, but greater variances on Majuro suggested

that inter-site differences were larger
(Fig. S4 in the Supplement). Growth
form differences were supported by
species composition trends. Reduced
abundances of several staghorn Acro-
pora, as well as A. palifera, A. c.f.
tortu osa, A. florida, A. lovelli, and en -
crusting Monti pora were found on
Majuro, as the assemblages became
more often domi nated by Porites rus
(Fig. S5 in the Supplement). Collec-
tively, coral as sem blage trends were
well summarized by species accu -
mulation patterns, as fewer species
ac counted for the majority of coral
coverage on Majuro (p < 0.01, t-test
be tween the slopes of cumulative do -
minance curves for Majuro and Ron-
gelap; Fig. 5).

Multivariate heterogeneity

While fish and coral assemblages
were clearly distinct between the 2
atolls, deeper examinations of multi-
variate heterogeneity facilitated an
understanding of the mechanisms
behind the degradation process. Larger
inter-site heterogeneity was found for
coral and fish assemblages on Majuro,
indicating an increase in taxonomic
isolation be tween sites where human
influences were most pronounced
(p < 0.01, t-tests between Bray-Curtis
inter-site similarities for both corals
and fishes between the 2 atolls;
Fig. 3a,b). Reef types were associated

with these trends for coral assemblages, as taxo-
nomic isolation was attributed to greater distinctions
between patch, channel, and outer reefs on Majuro
(ANOSIM R-statistic = 0.51 for coral assemblage dif-
ference between reef types, p < 0.01) compared with
Rongelap (ANOSIM R-statistic < 0.19; Fig. 3c,d). Reef
types were less influential predic tors for inter-site
food fish assemblage differences (ANOSIM R-statistic
<0.2 for both atolls), which were better explained in
accordance with proximity to human presence.

Opposite patterns emerged when examining the
intra-site heterogeneity (i.e. taxonomic redundancy
among replicate coral quadrats or fish SPC at any
particular site). The mean Bray-Curtis similarity
among replicate coral quadrats within each site was
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tests, *p < 0.05, **p < 0.01, ***p < 0.001)
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significantly greater on Majuro compared with Ron-
gelap (p = 0.004, t-test between similarities for corals
between the 2 atolls; Fig. 3e,f), with a similar trend
suggested for replicate fish SPC (p = 0.07, t-test
between intra-site similarities for fish). Thus, fewer
species began to constitute more and more of the
coral coverage and fish biomass within each site on
Majuro, indicating a reduced network of species
interactions.

Positive relationships between intra-site hetero-
geneity and human presence were strongest and
most pronounced for fish assemblages along a gradi-
ent of distance from the sparse human population on
Rongelap Atoll (R2 = 0.42, p < 0.05, regression be -
tween distance and Bray-Curtis, intra-site similarity
values; Fig. 6). Along this same gradient, there was
also a significant, negative relationship between
shark biomass and distance to humans (R2 = 0.74, p =
0.02; Fig. 7), as well as a positive relationship be -
tween herbivore/detritivore size and distance to

humans (R2 = 0.77, p < 0.001). The cumulative results
indicated that human presence and/or apex predator
biomass represented an origin for a series of linked
trophic interactions.

Linked trophic interactions

Path analyses determined that 2 interaction chains
had significantly higher covariance structures com-
pared with independence models (Fig. 8), and
were considered to represent trophic cascades
that spanned across functional guilds within coral
reef food webs. Foremost, human presence was
negatively related to herbivore/detritivore size, her-
bivore/ detritivore size was positively related to cal -
cifying benthic substrates, and calcifying substra -
tes were associated with reduced coral dominance
(p = 0.48, CFI = 1.00, RMSE < 0.01). Second, apex
 predator biomass was positively related to mean
herbivore/detritivore size, herbivore/detritivore size
was negatively related to non-calcifying benthic
substrate, and non-calcifying substrates were posi-
tively related to coral dominance (p = 0.38, CFI =
0.99, RMSE = 0.05). Thus, humans and apex preda-
tors both represented origins for ensuing ecological
cascades; however their roles were opposite as sug-
gested by their negative correlation (Fig. 8 & Fig. S6
in the Supplement). Notably, interaction chains that
in cluded direct relationships between human pres-
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ence and apex predators as part of a larger, fully
connected model ex plained less of the covariance
structures as compared with the 2 models described
above. In addition, no interaction chains that incor-
porated direct linkages between human influence
and benthic substrates were found to be significant,
suggesting that proxies for pollution were weaker
drivers of ecological patterns in comparison to top-
down influences.

DISCUSSION

The present findings reinforce how
sensitive many remote coral reef
ecosystems are to human presence
(Ferretti et al. 2010, Saavedra et al.
2011, Nadon et al. 2012). Apex preda-
tor biomass enhanced the size of her-
bivore/detritivore fish populations and
provided benefits to the benthic and
coral assemblages, while human pres-
ence, as low as 40 individuals,
reduced fish size, calcifying sub-
strates, and coral diversity in a pre-
dictable manner. Previous studies
have linked apex predator biomass to
larger grazing fish populations and
reductions in fleshy algal biomass
(Mumby et al. 2006, Newman et al.
2006), and have also linked enhanced
grazing fish abundance inside marine
protected areas with reduced algal

substrate and im proved coral cover (Mumby & Har-
borne 2010). This study was unique in that we
detected trophic inter actions spanning 4 functional
guilds associated with coral reef food webs. Central
to our findings was the transition in herbivore/detriti-
vore fish assemblages from being dominated by
large-bodied parrot fish species that are less territor-
ial, to being dominated by smaller-bodied parrot-
fishes and sur geon fishes with in crea sed population
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densities (DeMartini et al. 2008). Thus, despite main-
taining a similar or non-significant decline in overall
herbivore assemblage biomass, many small fish had
a reduced ecological function as compared with
fewer large fish (Lokrantz et al. 2008), and as a result,
top-down influences were disproportional drivers of
the reported spatial gradients generated across both
atolls.

Studies support that human presence acts con-
comitantly across predator and prey populations on
coral reefs, and often represents the strongest driver
of coral reef fish populations (Ferretti et al. 2010,
Kellner et al. 2010, Williams et al. 2011). However,
the negative relationships associated with human
presence should be considered alongside the positive
relationships that existed between apex predators,
prey size, and prey-assemblage composition. Previ-
ous studies corroborate with and add detail to our
finding that apex predators (1) preferentially selec -
ted small prey species that are easier to acquire
(Emmerson & Raffaelli 2004), (2) can promote diver-
sity by switching their diet based upon prey abun-
dances (Gross et al. 2009), and (3) indirectly provide
benefits to larger prey that can escape the risk of pre-
dation (Mumby et al. 2006). In turn, larger prey are
exponentially more efficient in performing their eco-
logical functions (Lokrantz et al. 2008, Bellwood et al.
2012). Thus, while the roles of humans and apex
predators were clearly opposing, predators had more
complex interactions within food webs (McCann et
al. 1998, Emmerson & Raffaelli 2004). Human inter-
actions were more ubiquitous and focused upon
larger fish across all trophic levels that yield a greater
payoff, in terms of food and monetary profit. In sup-
port of the subtle differences, path analyses found
that the strongest trophic interactions originated from
either human presence or apex predators (mainly
sharks), but no significant model integrated both.

The collective results also provided empirical sup-
port describing how species with strong trophic inter-
actions (i.e. species that accoun ted for high coral
 coverage or high fish biomass) were critical for main-
taining food web structure (McCann et al. 1998, Neu-
tel et al. 2002, Bascompte et al. 2005). As assem-
blages gravitated towards states with re duced
intra-site heterogeneity, opportunistic and/or toler-
ant species that were less regulated through top-
down processes became dominant. Eventually, coral
reef assemblages became dominated by small
acanthu rids (Ctenochaetus cyanocheilus), non-calci-
fying substrates, and tolerant corals (Porites rus),
indica ting a reduction in functional resilience (i.e.
ecological response time; Elmqvist et al. 2003), syno -

nymous with food web networks that have low return
rates to their modeled, stable configuration (i.e. low
stability food webs; Neutel et al. 2002, 2007). In this
sense, we consider ecological and mathematical sta-
bility to be synonymous, with stability being defined
by the capacity of trophic guilds to return to stable,
functional states following a perturbation (Neutel et
al. 2002, 2007, Elmqvist et al. 2003). Therefore, in -
tegrating empirical data into models that predict
 stability, return times, and directional transitions
may help to evaluate thresholds that are required for
resi lience.

While not formally ap proached, the present find-
ings suggested that trophic downgrading contributed
to the faster cycling of available nutrients through
opportunistic organisms with high assimilation rates
(i.e, faster growing turf and fleshy-algae substrates,
faster growing acanthurid assemblages; McCook et
al. 2001, Choat & Robertson 2002). Freshwater stud-
ies found that fish assemblages with faster life cycles
and less predator biomass had lower nutrient storage
and faster, less continuous nutrient cycling in aquatic
food webs (Vanni 2002, Emmerson & Raffaelli 2004,
Schmitz et al. 2010). Given that these findings res-
onate well with other systems and generalized theory
(Halaj & Wise 2002, Moore et al. 2004), further study
of nutrient and detrital subsidies would also improve
our understanding of coral reef trophic interactions.

CONCLUSIONS

For RMI atoll societies, marine resources contribute
disproportionally to the livelihood and economic
needs of the 68000 inhabitants, as ports have now
become established on 9 atolls that facilitate monthly
transport of harvested resources to Majuro-based
markets. Our ability to understand, translate, and
measure the consequences of harvesting regimes is
fundamental for their improved management. Eco -
system-level approaches offer an improved perspec-
tive for interpreting the nature and magnitude of
top-down processes resultant from harvesting. Eco -
system approaches are enhanced through examining
remote settings where apex predator populations
remain intact because they offer a deeper under-
standing of the inherent, natural interactions that
drive coral reef ecosystems. Expanding the gradient
of investigation across more of the remote atolls can
help to refine the present relationships and develop-
ing thresholds of unacceptable change in the coral
reef ecosystems upon which remote atoll societies
depend.
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