34 results
 Department of Environment,  Tonga

Between September 10, 2013 – October 3, 2013 the Khaled bin Sultan Living Oceans Foundation conducted a
research mission to Tonga, focusing on coral reefs surrounding the islands in the Ha'apai group (Sep 11-21),
Vava'u (Sep 22-28) and Niuaatoputapu (Sep 29-Oct 1). The mission included coral reef assessments, coral reef
research, habitat mapping, and educational activities. The objectives of the mission were to:

2xpdf
 Pacific Data Hub

Anthropogenically-mediated decreases in pH, termed ocean acidification (OA), may be a major threat to marine organisms and communities. Research has focussed mainly on tropical coral reefs, but temperate reefs play a no less important ecological role in colder waters, where OA effects may first be manifest.

 Pacific Data Hub

Myora Springs is one of many groundwater discharge sites on North Stradbroke Island (Queensland, Australia). Here spring waters emerge from wetland forests to join Moreton Bay, mixing with seawater over seagrass meadows dominated by eelgrass, Zostera muelleri. We sought to determine how low pH / high CO2 conditions near the spring affect these plants and their interactions with the black rabbitfish (Siganus fuscescens), a co-occurring grazer. In paired-choice feeding trials S. fuscescens preferentially consumed Z. muelleri shoots collected nearest to Myora Springs.

 Pacific Data Hub

Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of the major reef framework builders. In addition, acidification is likely to affect the important relationship between corals and their symbiotic dinoflagellates, and on the productivity of this association. However, little is known about how acidification impacts on the physiology of key reef builders and how acidification interacts with warming.

 Pacific Data Hub

Concern about the impacts of ocean acidification (OA) on ecosystem function has prompted many studies to focus on larval recruitment, demonstrating declines in settlement and early growth at elevated CO2 concentrations. Since larval settlement is often driven by particular cues governed by crustose coralline algae (CCA), it is important to determine whether OA reduces larval recruitment with specific CCA and the generality of any effects.

 Pacific Data Hub

Production of CO2-tolerant microalgae have received much attention as well as physicochemical fixation of CO2 in industrial flue gas. Although many microalgae that are tolerant to high levels of CO2 have been found and evaluated, the CO2 concentration for their good growth is generally lower than their maximum tolerable CO2 level. In the present study, we attempted to isolate microalgae capable of growing in high levels of CO2 (high-level-CO2-preferring microalgae, HCP-microalgae). We used a CO2-permeable polystyrene bottle for the enrichment of HCP-microalgae in environmental samples.

 Pacific Data Hub

Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e.

 Pacific Data Hub

Summary Synergies among stressors drive unanticipated changes to alternative states, yet little has been done to assess whether alleviating one or more contributing stressors may disrupt these interactions. It would be particularly useful to understand whether the synergistic effects of global and local stressors could be alleviated, leading to slower change or faster recovery, if conditions under the control of local management alone were managed (i.e. nutrient pollution). We utilized field-based mesocosms to manipulate CO2 (i.e.

 Pacific Data Hub

Anthropogenic carbon dioxide (CO2) emissions simultaneously increase ocean temperatures and reduce ocean surface pH, a process termed ocean acidification (OA). OA is expected to negatively affect the growth and physiology of many calcified organisms, but the response of non-calcified (fleshy) organisms is less well understood. Rising temperatures and pCO2 can enhance photosynthetic rates (within tolerance limits). Therefore, warming may interact with OA to alter biological responses of macroalgae in complicated ways.

 Pacific Data Hub

Turf algal assemblages are ubiquitous primary producers on coral reefs, but little is known about the response of this diverse group to ocean acidification (OA) across different temperatures. We tested the hypothesis that CO2 influences the functional response of epilithic and endolithic turf assemblages to increasing temperature. Replicate carbonate plugs covered by turf were collected from the reef and exposed to ambient and high pCO2 (1000 µatm) conditions for 3 weeks.

 Pacific Data Hub

The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died.

 Pacific Data Hub

Variation in rates of herbivory may be driven by direct effects of the abiotic environment on grazers, as well as indirect effects mediated by their food. Disentangling these direct and indirect effects is of fundamental importance for ecological forecasts of changing climate on species interactions and their influence on biogenic habitat. Whilst elevated atmospheric CO2 may have direct effects on grazers with calcareous structures via ‘ocean acidification', it may also have indirect effects via changes caused to their food.

 Pacific Data Hub

Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli's acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity.

 Pacific Data Hub

Rising anthropogenic CO2 in the atmosphere is accompanied by an increase in oceanic CO2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants, most notably those that precipitate calcium carbonate skeletons, such as reef-building corals. Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA.

 Pacific Data Hub

Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (NCP) and calcification (NCC). Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia) contribute to changes in the seawater aragonite saturation state ($Ømega$a).

 Pacific Data Hub

Carbon physiology of a genetically identified Ulva rigida was investigated under different CO2(aq) and light levels. The study was designed to answer whether (1) light or exogenous inorganic carbon (Ci) pool is driving growth; and (2) elevated CO2(aq) concentration under ocean acidification (OA) will downregulate CAext-mediated inline image dehydration and alter the stable carbon isotope ($δ$13C) signatures toward more CO2 use to support higher growth rate.

 Pacific Data Hub

Kelp forests are among the world's most productive marine ecosystems, yet little is known about their biogeochemistry. This study presents a 14-month time series (July 2013–August 2014) of surface and benthic dissolved inorganic carbon and total alkalinity measurements, along with accompanying hydrographic measurements, from six locations within a central California kelp forest. We present ranges and patterns of variability in carbonate chemistry, including pH (7.70–8.33), pCO2 (172–952 µatm), and the aragonite saturation state, $Ømega$Ar (0.94–3.91).

 Pacific Data Hub

The CO2-boosted trophic transfer from primary producers to herbivores has been increasingly discovered at natural CO2 vents and in laboratory experiments. Despite the emerging knowledge of this boosting effect, we do not know the extent to which it may be enhanced or dampened by ocean warming. We investigated whether ocean acidification and warming enhance the nutritional quality (C:N ratio) and energy content of turf algae, which is speculated to drive higher feeding rate, greater energy budget and eventually faster growth of herbivores.

 Pacific Data Hub

In this paper, we demonstrated that ocean acidification (OA) had significant negative effects on the microscopic development of Saccharina japonica in a short-term exposure experiment under a range of light conditions. Under elevated CO2, the alga showed a significant reduction in meiospore germination, fecundity, and reproductive success. Larger female and male gametophytes were noted to occur under high CO2 conditions and high light magnified these positive effects.

 Pacific Data Hub

1.Seaweeds are able to modify the chemical environment at their surface, in a micro‐zone called the diffusive boundary layer (DBL), via their metabolic processes controlled by light intensity. Depending on the thickness of the DBL, sessile invertebrates such as calcifying bryozoans or tube‐forming polychaetes living on the surface of the blades can be affected by the chemical variations occurring in this microlayer.