3 results
 Pacific Data Hub

With respect to their sensitivity to ocean acidification, calcifiers such as the coccolithophore Emiliania huxleyi have received special attention, as the process of calcification seems to be particularly sensitive to changes in the marine carbonate system. For E. huxleyi, apparently conflicting results regarding its sensitivity to ocean acidification have been published (Iglesias-Rodriguez et al., 2008a; Riebesell et al., 2000). As possible causes for discrepancies, intra-specific variability and different effects of CO2 manipulation methods, i.e.

 Pacific Data Hub

Exposure of the toxigenic dinoflagellate Alexandrium catenella to variations in pCO2/pH, comparable to current and near-future levels observed in Southern Chilean fjords, revealed potential functional adaptation mechanisms. Under calculated conditions for pH(total scale) and pCO2 ranging from 7.73–8.66 to 69.7–721.3 $μ$atm, respectively, the Chilean strain Q09 presented an optimum growth rate and dissolved inorganic carbon (DIC) uptake at near-equilibrium pCO2/pH conditions (∼8.1).

 Pacific Data Hub

This study investigated the impact of photon flux and elevated CO2 concentrations on growth and photosynthetic electron transport on the marine diatom Chaetoceros muelleri and looked for evidence for the presence of a CO2-concentrating mechanism (CCM). pH drift experiments clearly showed that C. muelleri has the capacity to use bicarbonate to acquire inorganic carbon through one or multiple CCMs. The final pH achieved in unbuffered cultures was not changed by light intensity, even under very low photon flux, implying a low energy demand of bicarbonate use via a CCM.