9 results
 Pacific Data Hub

Increasing atmospheric CO2 can decrease the seawater pH and carbonate ions, which may adversely affect the larval survival of calcareous animals. In this study, we simulated future atmospheric CO2 concentrations (800, 1500, 2000 and 3000 $μ$atm) and examined the effects of ocean acidification on the embryonic and larval stage of an infaunal clam Paphia undulate. Significant decrease of hatching of P.

 Pacific Data Hub

Ocean acidification (OA) is predicted to have widespread implications for marine organisms, yet the capacity for species to acclimate or adapt over this century remains unknown. Recent transgenerational studies have shown that for some marine species, exposure of adults to OA can facilitate positive carryover effects to their larval and juvenile offspring that help them to survive in acidifying oceanic conditions. But whether these positive carryover effects can persist into adulthood or the next generation is unknown.

 Pacific Data Hub

The present study was performed to evaluate the effects of CO2- or HCl-induced seawater acidification (pH 7.7 or 7.1; control: pH 8.1) on haemocytes of Mytilus edulis, and the changes in the structure and immune function were investigated during a 21-day experiment. The results demonstrated that seawater acidification had little effect on the cellular mortality and granulocyte proportion but damaged the granulocyte ultrastructure. Phagocytosis of haemocytes was also significantly inhibited in a clearly concentration-dependent manner, demonstrating that the immune function was affected.

 Pacific Data Hub

Understanding larval bivalve responses to variable regimes of seawater carbonate chemistry requires realistic quantification of physiological stress. Based on a degree-day modeling approach, we developed a new metric, the ocean acidification stress index for shellfish (OASIS), for this purpose. OASIS integrates over the entire larval period the instantaneous stress associated with deviations from published sensitivity thresholds to aragonite saturation state ($Ømega$Ar) while experiencing variable carbonate chemistry.

 Pacific Data Hub

The pteropod Limacina helicina frequently experiences seasonal exposure to corrosive conditions ($Ømega$ar  \textless 1) along the US West Coast and is recognized as one of the species most susceptible to ocean acidification (OA). Yet, little is known about their capacity to acclimatize to such conditions. We collected pteropods in the California Current Ecosystem (CCE) that differed in the severity of exposure to $Ømega$ar conditions in the natural environment.

 Pacific Data Hub

The CO2-boosted trophic transfer from primary producers to herbivores has been increasingly discovered at natural CO2 vents and in laboratory experiments. Despite the emerging knowledge of this boosting effect, we do not know the extent to which it may be enhanced or dampened by ocean warming. We investigated whether ocean acidification and warming enhance the nutritional quality (C:N ratio) and energy content of turf algae, which is speculated to drive higher feeding rate, greater energy budget and eventually faster growth of herbivores.

 Pacific Data Hub

Increasing levels of anthropogenic carbon dioxide in the world's oceans are resulting in a decrease in the availability of carbonate ions and a drop in seawater pH. This process, known as ocean acidification, is a potential threat to marine populations via alterations in survival and development. To date, however, little research has examined the effects of ocean acidification on rare or endangered species. To begin to assess the impacts of acidification on endangered northern abalone (Haliotis kamtschatkana) populations, we exposed H.

 Pacific Data Hub

It has been suggested that climate change may promote the outbreaks of diseases in the sea through altering the host susceptibility, the pathogen virulence, and the host-pathogen interaction. However, the impacts of ocean acidification (OA) on the pathogen components of bacterial community and the host-pathogen interaction of marine bivalves are still poorly understood.

 Pacific Data Hub

Increasing atmospheric CO2 can decrease seawater pH and carbonate ions, which may adversely affect the larval survival of calcareous animals. In this study, we simulated future atmospheric CO2 concentrations (800, 1500, 2000 and 3000 ppm) and examined the effects of ocean acidification on the early development of 3 mollusks (the abalones Haliotis diversicolor and H. discus hannai and the oyster Crassostrea angulata).