12 results
 Pacific Data Hub

Ocean acidification (OA), attributed to the sequestration of atmospheric carbon dioxide (CO2) into the surface ocean, and coastal eutrophication, attributed in part to land-use change and terrestrial runoff of fertilizers, have received recent attention in an experimental framework examining the effects of each on coral reef net ecosystem calcification (Gnet). However, OA and eutrophication in conjunction have yet to receive attention from the perspective of coral reef sediment dissolution.

 Pacific Data Hub

In order to help predict the effects of anthropogenic stressors on shallow water carbonate environments, it is important to focus research on regions containing natural oceanographic gradients, particularly with respect to interactions between oceanography and ecologically sensitive carbonate producers. The Galápagos Archipelago, an island chain in the eastern equatorial Pacific, spans a natural nutrient, pH, and temperature gradient due to the interaction of several major ocean currents.

 Pacific Data Hub

An expedition to the Kavachi submarine volcano (Solomon Islands) in January 2015 was serendipitously timed with a rare lull in volcanic activity that permitted access to the inside of Kavachi's active crater and its flanks. The isolated location of Kavachi and its explosive behavior normally restrict scientific access to the volcano's summit, limiting previous observational efforts to surface imagery and peripheral water-column data.

 Pacific Data Hub

Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (NCP) and calcification (NCC). Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia) contribute to changes in the seawater aragonite saturation state ($Ømega$a).

 Pacific Data Hub

Oceanic uptake of anthropogenic carbon dioxide (CO2) is altering the carbonate chemistry of seawater, with potentially negative consequences for many calcifying marine organisms. At the same time, increasing fisheries exploitation is impacting on marine ecosystems. Here, using increased benthic-invertebrate mortality as a proxy for effects of ocean acidification, the potential impact of the two stressors of fishing and acidification on the southeast Australian marine ecosystem to year 2050 was explored.

 Pacific Data Hub

The ecological effects of ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) on benthic marine communities are largely unknown. We investigated in situ the consequences of long-term exposure to high CO2 on coral-reef-associated macroinvertebrate communities around three shallow volcanic CO2 seeps in Papua New Guinea. The densities of many groups and the number of taxa (classes and phyla) of macroinvertebrates were significantly reduced at elevated CO2 (425–1100 µatm) compared with control sites.

 Pacific Data Hub

A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010-2100) time periods. Reef platform sediment production is estimated at 569 m3 yr-1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81).

 Pacific Data Hub

Ocean acidification is predicted to impact the structure and function of all marine ecosystems in this century. As focus turns towards possible impacts on interactions among marine organisms, its effects on the biology and transmission potential of marine parasites must be evaluated. In the present study, we investigate two marine trematode species (Philophthalmus sp. and Parorchis sp., both in the family Philophthalmidae) infecting two marine gastropods.

 Pacific Data Hub

By the end of the century coral reefs likely will be affected negatively by ocean acidification (OA), but both the effects of OA on coral communities and the crossed effects of OA with other physical environmental variables are lacking. One of the least considered physical parameters is water flow, which is surprising considering its strong role in modulating the physiology of reef organisms and communities. In the present study, the effects of flow were tested on coral reef communities maintained in outdoor flumes under ambient pCO2 and high pCO2 (1300 $μ$atm).

 Pacific Data Hub

Rising atmospheric CO2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO2 seeps in Papua New Guinea.

 Pacific Data Hub

Anthropogenic CO2 is causing warming and ocean acidification. Coral reefs are being severely impacted, yet confusion lingers regarding how reefs will respond to these stressors over this century. Since the 1982-83 El Niño-Southern Oscillation warming event, the persistence of reefs around the Galápagos Islands has differed across an acidification gradient. Reefs disappeared where pH \textless 8.0 and aragonite saturation state ($Ømega$arag) ≤ 3 and have not recovered, whereas one reef has persisted where pH \textgreater 8.0 and $Ømega$arag \textgreater 3.

 Pacific Data Hub

Context Regime shifts are well known for driving penetrating ecological change, yet we do not recognise the consequences of these shifts much beyond species diversity and productivity. Sound represents a multidimensional space that carries decision-making information needed for some dispersing species to locate resources and evaluate their quantity and quality. Objectives Here we assessed the effect of regime shifts on marine soundscapes, which we propose has the potential function of strengthening the positive or negative feedbacks that mediate ecosystem shifts.