12 results
 Pacific Data Hub

Ocean acidification (OA), attributed to the sequestration of atmospheric carbon dioxide (CO2) into the surface ocean, and coastal eutrophication, attributed in part to land-use change and terrestrial runoff of fertilizers, have received recent attention in an experimental framework examining the effects of each on coral reef net ecosystem calcification (Gnet). However, OA and eutrophication in conjunction have yet to receive attention from the perspective of coral reef sediment dissolution.

 Pacific Data Hub

Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of the major reef framework builders. In addition, acidification is likely to affect the important relationship between corals and their symbiotic dinoflagellates, and on the productivity of this association. However, little is known about how acidification impacts on the physiology of key reef builders and how acidification interacts with warming.

 Pacific Data Hub

Ocean acidification and warming are predicted to affect the ability of marine bivalves to build their shells, but little is known about the underlying mechanisms. Shell formation is an extremely complex process requiring a detailed understanding of biomineralization processes. Sodium incorporation into the shells would increase if bivalves rely on the exchange of Na+/H+ to maintain homeostasis for shell formation, thereby shedding new light on the acid-base and ionic regulation at the calcifying front.

 Pacific Data Hub

With respect to their sensitivity to ocean acidification, calcifiers such as the coccolithophore Emiliania huxleyi have received special attention, as the process of calcification seems to be particularly sensitive to changes in the marine carbonate system. For E. huxleyi, apparently conflicting results regarding its sensitivity to ocean acidification have been published (Iglesias-Rodriguez et al., 2008a; Riebesell et al., 2000). As possible causes for discrepancies, intra-specific variability and different effects of CO2 manipulation methods, i.e.

 Pacific Data Hub

Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e.

 Pacific Data Hub

The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died.

 Pacific Data Hub

The impact of ocean acidification (OA) on coral calcification, a subject of intense current interest, is poorly understood in part because of the presence of symbionts in adult corals. Early life history stages of Acropora spp. provide an opportunity to study the effects of elevated CO2 on coral calcification without the complication of symbiont metabolism.

 Pacific Data Hub

Acidification of seawater owing to oceanic uptake of atmospheric CO2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (n=3) incubated in continuous-flow mesocosms subject to future seawater conditions.

 Pacific Data Hub

By the end of the century coral reefs likely will be affected negatively by ocean acidification (OA), but both the effects of OA on coral communities and the crossed effects of OA with other physical environmental variables are lacking. One of the least considered physical parameters is water flow, which is surprising considering its strong role in modulating the physiology of reef organisms and communities. In the present study, the effects of flow were tested on coral reef communities maintained in outdoor flumes under ambient pCO2 and high pCO2 (1300 $μ$atm).

 Pacific Data Hub

Stable oxygen and carbon isotope measurements on biogenic calcite and aragonite have become standard tools for reconstructing past oceanographic and climatic change. In aquatic organisms, super(18)O / super(16)O ratios in the shell carbonate are a function of the ratio in the sea water and the calcification temperature. In contrast, super13C/ super(12)C ratios are controlled by the ratio of dissolved inorganic carbon in sea water and physiological processes such as respiration and symbiont photosynthesis.

 Pacific Data Hub

Despite the heightened awareness of ocean acidification (OA) effects on marine organisms, few studies empirically juxtapose biological responses to CO2 manipulations across functionally distinct primary producers, particularly benthic algae. Algal responses to OA may vary because increasing CO2 has the potential to fertilize photosynthesis but impair biomineralization. Using a series of repeated experiments on Palmyra Atoll, simulated OA effects were tested across a suite of ecologically important coral reef algae, including five fleshy and six calcareous species.

 Pacific Data Hub

The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO32− to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes.