2 results
 Pacific Data Hub

Diatoms are often considered to be a single functional group, yet there is a great deal of morphological, genetic and ecological diversity within the class. How these differences will translate into species-specific responses to rapid changes in the ocean environment resulting from climate change and eutrophication is currently poorly understood.

 Pacific Data Hub

Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage.