7 results
 Pacific Data Hub

We test for trace element proxies in the high-magnesium calcite fraction of bamboo coral internodes by comparing environmental conditions and growth rates to the specimen-mean compositions of 73 corals that were live-caught at depths ranging from 3 to 3950 m and collected from habitats ranging from tropical coral reefs to the Antarctic slope.Comparisons were done at a large geographic scale (LGS) and for a well sampled area south of Australia, across depths at a single site, in order to help separate the effects of environmental variables that co-vary at one spatial scale, but not the other

 Pacific Data Hub

Using the results from the NCAR CSM1.4-coupled global carbon cycle–climate model under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios SRES A2 and B1, we estimated the effects of both global warming and ocean acidification on the future habitats of corals in the seas around Japan during this century. As shown by Yara et al.

 Pacific Data Hub

Ocean acidification (OA) is expected to drive the transition of coral reef ecosystems from net calcium carbonate (CaCO3) precipitating to net dissolving within the next century. Although permeable sediments represent the largest reservoir of CaCO3 in coral reefs, the dissolution of shallow CaCO3 sands under future pCO2 levels has not been measured under natural conditions. In situ, advective chamber incubations under elevated pCO2 (̃800 µatm) shifted the sediments from net precipitating to net dissolving.

 Pacific Data Hub

The 3-day diurnal dynamics of carbonate system and related parameters on Luhuitou fringing reef of Sanya Bay-adjacent to the South China Sea (SCS) were observed in December of 2009 (early winter), April (spring), July (summer) and November (late-autumn) of 2010. The Luhuitou fringing reef ecosystem was generally dominated by macro and planktonic algae throughout the year except by coralline algae in winter. The system parameters showed distinct diurnal trends in the four seasons.

 Pacific Data Hub

Rising anthropogenic CO2 in the atmosphere is accompanied by an increase in oceanic CO2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants, most notably those that precipitate calcium carbonate skeletons, such as reef-building corals. Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA.

 Pacific Data Hub

Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (NCP) and calcification (NCC). Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia) contribute to changes in the seawater aragonite saturation state ($Ømega$a).

 Pacific Data Hub

Anthropogenic CO2 is causing warming and ocean acidification. Coral reefs are being severely impacted, yet confusion lingers regarding how reefs will respond to these stressors over this century. Since the 1982-83 El Niño-Southern Oscillation warming event, the persistence of reefs around the Galápagos Islands has differed across an acidification gradient. Reefs disappeared where pH \textless 8.0 and aragonite saturation state ($Ømega$arag) ≤ 3 and have not recovered, whereas one reef has persisted where pH \textgreater 8.0 and $Ømega$arag \textgreater 3.