17 results
 Pacific Data Hub

Increasing seawater temperatures and CO2 levels associated with climate change affect the shallow marine ecosystem function. In this study, the effects of elevated seawater temperature and partial pressure of CO2 (pCO2) on subtropical sediment systems of mangrove, seagrass, and coral reef lagoon habitats of Okinawa, Japan, were examined.

 Pacific Data Hub

There is a long history of examining the impacts of nutrient pollution and pH on coral reefs. However, little is known about how these two stressors interact and influence coral reef ecosystem functioning. Using a six-week nutrient addition experiment, we measured the impact of elevated nitrate (NO−3) and phosphate (PO3−4) on net community calcification (NCC) and net community production (NCP) rates of individual taxa and combined reef communities.

 Pacific Data Hub

Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e.

 Pacific Data Hub

Anthropogenic carbon dioxide (CO2) emissions simultaneously increase ocean temperatures and reduce ocean surface pH, a process termed ocean acidification (OA). OA is expected to negatively affect the growth and physiology of many calcified organisms, but the response of non-calcified (fleshy) organisms is less well understood. Rising temperatures and pCO2 can enhance photosynthetic rates (within tolerance limits). Therefore, warming may interact with OA to alter biological responses of macroalgae in complicated ways.

 Pacific Data Hub

Turf algal assemblages are ubiquitous primary producers on coral reefs, but little is known about the response of this diverse group to ocean acidification (OA) across different temperatures. We tested the hypothesis that CO2 influences the functional response of epilithic and endolithic turf assemblages to increasing temperature. Replicate carbonate plugs covered by turf were collected from the reef and exposed to ambient and high pCO2 (1000 µatm) conditions for 3 weeks.

 Pacific Data Hub

The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died.

 Pacific Data Hub

Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli's acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity.

 Pacific Data Hub

Body size has large effects on organism physiology, but these effects remain poorly understood in modular animals with complex morphologies. Using two trials of a ∼24 day experiment conducted in 2014 and 2015, we tested the hypothesis that colony size of the coral Pocillopora verrucosa affects the response of calcification, aerobic respiration and gross photosynthesis to temperature (∼26.5 and ∼29.7°C) and PCO2  (∼40 and ∼1000 µatm). Large corals calcified more than small corals, but at a slower size-specific rate; area-normalized calcification declined with size.

 Pacific Data Hub

We conducted a series of experiments to examine short-term (2-5 days) effects of abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater on rates of primary and bacterial production at Station ALOHA (22°45' N, 158° W) in the North Pacific Subtropical Gyre (NPSG). The majority of experiments (8 of 10 total) displayed no response in rates of primary production (measured by 14C-bicarbonate assimilation; 14C-PP) under elevated pCO2 (̃1100 $μ$atm) compared to ambient pCO2 (\̃387 $μ$atm).

 Pacific Data Hub

Sodium hypochlorite (NaOCl) is widely used to disinfect seawater in power plant cooling systems in order to reduce biofouling, and in ballast water treatment systems to prevent transport of exotic marine species. While the toxicity of NaOCl is expected to increase by ongoing ocean acidification, and many experimental studies have shown how algal calcification, photosynthesis and growth respond to ocean acidification, no studies have investigated the relationship between NaOCl toxicity and increased CO2.

 Pacific Data Hub

Anthropogenic nutrient inputs enhance microbial respiration within many coastal ecosystems, driving concurrent hypoxia and acidification. During photosynthesis, Symbiodinium spp., the microalgal endosymbionts of cnidarians and other marine phyla, produce O2 and assimilate CO2 , and thus potentially mitigate the exposure of the host to these stresses. However, such a role for Symbiodinium remains untested for non-calcifying cnidarians.

 Pacific Data Hub

In this paper, we demonstrated that ocean acidification (OA) had significant negative effects on the microscopic development of Saccharina japonica in a short-term exposure experiment under a range of light conditions. Under elevated CO2, the alga showed a significant reduction in meiospore germination, fecundity, and reproductive success. Larger female and male gametophytes were noted to occur under high CO2 conditions and high light magnified these positive effects.

 Pacific Data Hub

This study investigated the impact of photon flux and elevated CO2 concentrations on growth and photosynthetic electron transport on the marine diatom Chaetoceros muelleri and looked for evidence for the presence of a CO2-concentrating mechanism (CCM). pH drift experiments clearly showed that C. muelleri has the capacity to use bicarbonate to acquire inorganic carbon through one or multiple CCMs. The final pH achieved in unbuffered cultures was not changed by light intensity, even under very low photon flux, implying a low energy demand of bicarbonate use via a CCM.

 Pacific Data Hub

Increased CO2 and associated acidification in seawater, known as ocean acidification, decreases calcification of most marine calcifying organisms. However, there is little information available on how marine macroalgae would respond to the chemical changes caused by seawater acidification. We hypothesized that down-regulation of bicarbonate acquisition by algae under increased acidity and CO2 levels would lower the threshold above which photosynthetically active radiation (PAR) becomes excessive.

 Pacific Data Hub

Ulva spp., an increasingly important food, are the dominant species of the large-scale green tides. In this study, both the growth and the physiological responses of the Ulva prolifera were studied after cultured in three different light and dark regimes (12:12, 14:10 and 16:8-h light/dark) in combination with current (420 $μ$atm; LC) and increased (1000 $μ$atm; HC) levels of atmospheric CO2. Grown rate of U.

 Pacific Data Hub

Despite the heightened awareness of ocean acidification (OA) effects on marine organisms, few studies empirically juxtapose biological responses to CO2 manipulations across functionally distinct primary producers, particularly benthic algae. Algal responses to OA may vary because increasing CO2 has the potential to fertilize photosynthesis but impair biomineralization. Using a series of repeated experiments on Palmyra Atoll, simulated OA effects were tested across a suite of ecologically important coral reef algae, including five fleshy and six calcareous species.

 Pacific Data Hub

The physiological response to individual and combined stressors of elevated temperature and pCO2 were measured over a 24-day period in four Pacific corals and their respective symbionts (Acropora millepora/Symbiodinium C21a, Pocillopora damicornis/Symbiodinium C1c-d-t, Montipora monasteriata/Symbiodinium C15, and Turbinaria reniformis/Symbiodinium trenchii). Multivariate analyses indicated that elevated temperature played a greater role in altering physiological response, with the greatest degree of change occurring within M. monasteriata and T. reniformis.