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ARTICLE INFO ABSTRACT

A novel NASA remote sensing technique, airborne fluid lensing, has enabled cm-resolution multispectral 3D
remote sensing of aquatic systems, without adverse refractive distortions from ocean waves. In 2013, a drone-
based airborne fluid lensing campaign conducted over the coral reef of Ofu Island, American Samoa, revealed
complex 3D morphological, ecological, and bathymetric diversity at the cm-scale over a regional area. In this
paper, we develop and validate supervised machine learning algorithm products tailored for accurate automated
segmentation of coral reefs using airborne fluid lensing multispectral 3D imagery. Results show that airborne
fluid lensing can significantly improve the accuracy of coral habitat mapping using remote sensing.

The machine learning algorithm is based on multidimensional naive-Bayes maximum a posteriori (MAP)
estimation. Provided a user-selected training subset of 3D multispectral images, comprising ~1% of the total
dataset, the algorithm separates living structure from nonliving structure and segments the coral reef into four
distinct morphological classes — branching coral, mounding coral, basalt rock, and sand. The user-selected
training data and algorithm classification results are created and verified, respectively, with sub-cm-resolution
ground-truth maps, manually generated from extensive in-situ mapping, underwater gigapixel photogrammetry,
and visual inspection of the 3D dataset with subject matter experts.

The algorithm generates 3D cm-resolution data products such as living structure and morphology distribution
for the Ofu Island coral reef ecosystem with 95% and 92% accuracy, respectively. By comparison, classification
of m-resolution remote sensing imagery, representative of the effective spatial resolution of commonly-used
airborne and spaceborne aquatic remote sensing instruments subject to ocean wave distortion, typically pro-
duces data products with 68% accuracy. These results suggest existing methodologies may not resolve coral reef
ecosystems in sufficient detail for accurate determination of percent cover of living structure and morphology
breakdown.

The methods presented here offer a new remote sensing approach enabling repeatable quantitative ecosystem
assessment of aquatic systems, independent of ocean wave distortion and sea state. Aquatic remote sensing
imagery, free from refractive distortion, appears necessary for accurate and quantitative health assessment
capabilities for coral reef ecosystems at the cm-scale, over regional areas. The accurate and automated de-
termination of percent cover and morphology distribution at cm-resolution may lead to a significantly improved
understanding of reef ecosystem dynamics and responses in a rapidly-changing global climate.
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1. Introduction experiencing one of most significant changes in their history on Earth,

triggered by unprecedented anthropogenic pressures, warming seas,

As one of the most biologically complex and diverse ecosystems
among aquatic systems, coral reefs are not only of great ecological
value (Moberg and Folke, 1999), but also of economic value (Costanza
et al., 1997). Reef ecosystems mitigate changes in our planet's biosphere
through a diversity and density of species few other ecosystems possess
(Ridgwell and Zeebe, 2005). At present, however, coral reefs are

ocean acidification, sea level rise, habitat destruction, agricultural
runoff, and overfishing, among other contributing stressors (Bellwood
et al., 2004). Our understanding of the impacts of these rapidly-chan-
ging pressures is limited by a severe lack of global baseline habitat
mapping data and knowledge of reef makeup over regional areas and
short timescales. With typical coral growth rates of ~1cm per year,
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effective spatial resolutions at the cm-scale are needed to assess change
(Chirayath and Earle, 2016; Edinger et al., 2000; Storlazzi et al., 2016).
Such data are vital for adequate management of these aquatic resources
(Bellwood et al., 2004), and accurate assessment and quantification of
reef ecosystem status (Andréfouét et al., 2003) over time.

The development of high-resolution coral reef remote sensing
technologies and habitat mapping algorithms is needed for effective
conservation of these systems. A comparison can be made from the
correlation between persistent observation, remote sensing, and map-
ping of terrestrial ecosystems, such as rainforests, and the consequent
adoption of forest protection measures to combat the effects of defor-
estation, among other stressors, by natural and anthropogenic factors
(Nagendra et al., 2013). High-resolution habitat mapping from new
remote sensing systems and mapping algorithms significantly enhanced
our understanding of terrestrial ecosystem dynamics and their con-
sequences for human civilization and the environment (Hansen et al.,
2013; Wulder et al., 2004) — a robust analog for marine systems is still
needed.

Mapping of coral reef ecosystems provides a snapshot through
characterization of the abundance and distribution of living coral,
overall structure, morphology, rugosity, complexity, and benthic floor
type. Coral reef maps can be used as a baseline for documentation and
detection of change in percent cover of living coral, spatial distribution,
and overall assessment of the ecosystem. However, the air-water in-
terface above coral reefs introduces several complexities to both the
remote sensing of such environments and the development of robust
habitat mapping algorithms, as discussed in the following section. Over
the past few decades, mapping efforts have utilized a variety of input
data from observations by divers to airborne and spaceborne multi-
spectral remote sensing (Caras et al., 2017; Miller et al., 2005), un-
derwater 2D and 3D photogrammetry (Beijbom et al., 2015; Burns
et al., 2015; Storlazzi et al., 2016), and unoccupied aerial systems
(UAS), or drones (Casella et al., 2016; Levy et al., 2018). Each of these
sensing techniques resolves coral reef maps at different resolutions to
gain insight into variations over short distances, such as species di-
versity, rugosity, and morphology while utilizing regional data from
airborne and spaceborne remote sensing to extrapolate reef status over
regional areas. As such, accurate coral reef mapping at high resolution
over regional areas has been limited to availability of simultaneous in-
situ sensing data concurrent with high-resolution multispectral remote
sensing data.

1.1. Remote sensing & mapping of coral reefs

Benthic mapping of coral reefs is essential to assess the current
status of reefs, successfully inform mitigation strategies for ecosystem
stressors, establish a time-series to document ecosystem change, and
prioritize management and protection efforts (Monaco et al., 2012).
Percent living cover, or the percentage of a coral reef occupied by living
coral from a two-dimensional nadir perspective, and its variation over
time has been shown to be a strong indicator of coral reef health (Joyce
et al., 2013; Scopélitis et al., 2011). Coral reef morphology, which de-
scribes the size and shape of a reef and coral genera, is similarly useful
for understanding the abundance and distribution of living coral, as
well as characterizing physical parameters of a reef such as rugosity,
and surface area to volume ratio, among others (Goodman et al., 2013).
Morphology mapping data, coupled with bathymetry models of a reef
are extensively used in physical oceanographic models of flow over reef
systems (Monismith, 2007), improving models of coastal zones, flood
zones, pollutant transport, sedimentation processes (Lara et al., 2016)
and the spatial extent of harmful algal blooms (Aleynik et al., 2016).
Such models are often coupled to flow simulations and used to inform
how best to protect the coastal cities and infrastructure from storm
events (Spurgeon, 1992).

Benthic mapping of coral reefs using remote sensing data has been
performed at multiple spatial scales with manual, semi-automated, and
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fully-automated segmentation algorithms (Goodman et al., 2013). On
global scales, Landsat, Terra and Aqua spacecraft have been used with
manual segmentation and semi-automated pixel-based methods to
classify terrestrial targets (Hansen et al., 2010), as well as coral reefs
into reef/non-reef regions (Andréfouét et al., 2006; Rowlands et al.,
2012) with effective spatial resolutions of ~30m-10km. On regional
scales, benthic assemblages can be discriminated using high-resolution
commercial imagery from spacecraft such as IKONOS, WorldView-2,
and QuickBird (Maeder et al., 2002; Mishra et al., 2006; Reshitnyk
et al., 2014) with effective spatial resolutions of ~3 m. Airborne mul-
tispectral and full-waveform LiDAR remote sensing instruments with
effective spatial resolutions of ~2m have been shown to effectively
distinguish between regions containing predominantly healthy or un-
healthy coral as well as characterize coral reef morphologies, benthic
habitat types, and water column constituents using a number of seg-
mentation algorithms (Collin et al., 2011; Collin and Planes, 2012;
Hochberg and Atkinson, 2003).

Surface wave distortion and optical attenuation from water can
significantly affect the effective spatial resolution and signal-to-noise
properties of aquatic remote sensing systems depending on ambient
surface, water column, and downwelling irradiance conditions
(Chirayath and Earle, 2016). For coral reef systems, ocean wave dis-
tortion can limit the effective spatial resolution of low-altitude airborne
remote sensing imagers to 1-5m, severely impairing observations of
fine-scale coral reef features (Chirayath, 2016), and often necessitating
underwater survey methods to access higher resolutions spatial scales.
At spatial scales of ~1 cm, however, reefs exhibit pronounced hetero-
geneity, rapidly differing in texture, morphology, color, and depth.
Presently, performing such imaging and benthic mapping at sub-meter
and centimeter resolutions has relied on underwater survey techniques
including photogrammetry, acoustic sensing, and visual inspection of
transects. As such, benthic mapping algorithms used for lower resolu-
tion datasets can be overly sensitive to the large variances at the cm-
scale and ultimately poorly suited for characterizing the benthic en-
vironment at fine scales.

Understanding conservation parameters (Horning et al., 2010) over
large datasets with increased spatial and temporal resolution, multi-
spectral imagery, and bathymetry, motivates the development of un-
ique computational toolboxes and remote sensing analysis techniques.
Fortunately, growth in computational power and storage capacity,
concurrent with the development of improved machine learning algo-
rithms and semi-automated classification methods (Saul and Purkis,
2015), suggest that the conservation of marine ecosystems will be sig-
nificantly enhanced by the acquisition of cm-scale remote sensing data.

1.2. Novel contributions

In this paper, we develop and validate supervised machine learning
algorithm products for automated segmentation of coral reefs using
airborne fluid lensing multispectral 3D imagery. The algorithm gen-
erates a 3D cm-resolution habitat map delineating the spatial dis-
tribution of living coral structure and morphology in for the Ofu Island
coral reef ecosystem. The data products of the algorithm are validated
through error analysis with in-situ ground-truth mapping and under-
water photogrammetry from the surveyed areas. The results from this
study demonstrate quantitively that cm-scale airborne fluid lensing
provides a significant improvement in coral classification accuracy as
compared to remote sensing methods that do not correct for refractive
distortions.

1.3. Airborne fluid lensing and 3D Cm-scale aquatic remote sensing without
ocean wave distortion

The air-water interface above coral reefs introduces significant
complexities to sustained remote sensing of such environments. The
optical interaction of light with fluids is a complex phenomenon
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Fig. 1. - Fluid Lensing Algorithm Results. The general fluid lensing algorithm is used to process high frame rate multispectral imagery to remove refractive
distortions from ocean waves and enhance the signal to noise ratio (SNR) of benthic images. (A-D) present imagery from the fluid lensing test pool showing removal
of ocean wave related refractive distortion and signal enhancement of a USAF test target at a depth of 4.5 m. The flat fluid reference (A) shows target under flat fluid
conditions over a 1 s integration time. The raw distorted frame (B) shows target under typical ocean wave conditions for shallow marine systems. Mean image (C) is
the 90 frame average of raw frames over 1 s of integration time. The 2D fluid lensing result (D) uses these same 90 frames to successfully recover the test target with
an effective 0.25 cm spatial resolution and uses caustics to enhance SNR. Airborne fluid lensing is used to survey aquatic system with UAVs. Raw airborne imagery
from a 2013 airborne field test in American Samoa is shown in (E), with the 2D fluid lensing result from 90 frames in (F). Cm-scale 3D remote sensing of coral reef in
American Samoa with fluid distortion (G), and without fluid distortion as processed using the 3D airborne fluid lensing algorithm (H). From PhD thesis, Chirayath

(2016).

impacting the remote sensing of more than 71% of Earth's surface. As of
2019, the authors know of only one global and localized refraction-
corrected remote sensing imaging technology, airborne fluid lensing. At
present, no alternative remote sensing technologies are known to the
authors that are able to robustly remotely sense underwater objects at
the cm-scale or finer at depths of 1-30 m due to surface wave distortion
and the strong attenuation of light in the water column, in stark con-
trast to modern terrestrial remote sensing capabilities. As a con-
sequence, our ability to accurately assess the status and health of
aquatic systems is severely impaired.

As visible light interacts with aquatic surface waves, time-depen-
dent nonlinear optical aberrations appear, forming intense caustic
bands of light on the seafloor, and producing refractive lensing that
magnifies and demagnifies underwater objects. Fig. 1 B, E, and C dis-
play these effects over a test target and coral reef (Chirayath, 2016).
extensively explores this phenomenon in the context of ocean waves,
the ocean wave fluid lensing phenomenon, and develops and validates a
novel high-resolution aquatic remote sensing technique for imaging
through ocean waves called the airborne fluid lensing algorithm. Air-
borne fluid lensing introduces concepts of caustic-derived bathymetry
and fluid lensing lenslet homography to not only remove refractive
distortions over aquatic targets, but also determine depth, 3D structure,
and enhance the signal to noise ratio and effective spatial resolution of
imagery by exploiting caustics and magnifying wave events. Airborne
fluid lensing typically requires full-frame multispectral (at least RGB
bands) imagery at ~100 Hz with concurrent sun angle and telemetry
data for successful reconstructions of aquatic systems.

Previously, airborne 2D fluid lensing was validated using full-phy-
sics supercomputer simulations as well as a number of airborne field
campaigns over coral reef environments (Chirayath, 2016; Chirayath
and Earle, 2016). Fig. 1 D, F, and H show fluid lensing results de-
monstrating multispectral imaging of test targets in depths up to
4.5 mat a resolution of at least 0.25cm versus a raw fluid-distorted
frame with a resolution less than 25 cm. These results show the appli-
cation of fluid lensing to addressing the surface wave distortion and

optical absorption challenges posed by aquatic remote sensing.

Most recently, airborne fluid lensing was developed into the dedi-
cated NASA FluidCam 1 & 2 instruments, enabling cm-resolution mul-
tispectral 3D airborne remote sensing of aquatic systems from small
unmanned aerial vehicles (sUAV) (Chirayath, 2016) and other remote
sensing platforms, opening the possibility to autonomously survey
swaths of coral at extremely fine spatial scales over areas tens of square
kilometers in extent.

This study utilizes airborne fluid lensing data products from a 2013
airborne field campaign in American Samoa (Chirayath and Earle,
2016). Fluid lensing dataset products for this study consist of cm-scale
refraction-corrected 3D remote sensing imagery in three spectral bands,
red (R), green (G), and blue (B). 2D data products consist of refraction-
corrected, georectified RGB orthomosaics in GeoTIFF and KMZ formats.
3D data consist of depth elevation models in GeoTIFF format as well as
point clouds, meshes, and textured 3D models in OBJ and FBX formats.
Datasets are available for public download (NASA Ames Laboratory for
Advanced Sensing, 2016).

1.4. 3D aquatic ecosystem assessment

Prior research applying machine learning approaches to 3D multi-
spectral datasets, similar to those produced by airborne fluid lensing,
but captured underwater at the ~1 cm-1m scale, shows that fine-scale
3D imagery (Burns et al., 2015) and 2D imagery (Beijbom et al., 2015)
affords significant improvements in the accuracy and delineation of reef
rugosity and morphology classification as well ecological assessment,
such as the automated annotation of benthic surveys and identification
of coral species. To date, no algorithms have been developed specifi-
cally to leverage airborne fluid lensing 3D multispectral datasets.

While airborne fluid lensing campaigns afford a unique cm-resolu-
tion 3D perspective of reef systems, offering the potential for high-re-
solution coral reef habitat mapping, the 3D image data generated reg-
ularly exceed multiple terabytes in size. Consequently, access, analysis,
and processing of cm-resolution 3D imagery for reef assessment and
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2013 Survey Region

ML Test Area

Figs. 2. -2013 Airborne Fluid Lensing Field Campaign. (A) Location of the 2013 field campaign in Ofu Island, American Samoa. (B) Full survey area indicated in
yellow and spans an area of approximately 1km? Area used in study for manual segmentation, testing, and validation of automated machine learning (ML)
segmentation indicated in green and is ~25m X 100 m in area. (C) Combined sUAV GPS data from airborne survey shown in red. Terrestrial and underwater
photogrammetry locations indicated by green points in select locations. These data were used with airborne imagery for pixel-based manual four-class morphology
segmentation, and two-class living versus nonliving segmentation. (D) Sample underwater photogrammetry used for manual segmentation of airborne fluid lensing
data, exhibiting predominantly mounding coral morphology. (E) Sample underwater photogrammetry used for manual segmentation of airborne fluid lensing data,
exhibiting predominantly branching coral morphology. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)

manual habitat mapping has remained limited. This motivates the de-
velopment of an automated approach to coral reef habitat mapping for
airborne fluid lensing datasets.

1.5. Machine learning for coral reef mapping

Machine learning has extensively been used to classify aquatic re-
mote sensing data into benthic habitat maps (Lary et al., 2016; Mumby
et al.,, 2004)and can be generally separated into two classes —

unsupervised and supervised machine learning.

In unsupervised machine learning, algorithms find groupings and
patterns within datasets, either based on clustering algorithms, such as
k-means (Hartigan and Wong, 1979), or dimensionality reduction, such
as principle component analysis (Bishop, 2006). Segmentation results
using unsupervised machine learning can assist in revealing otherwise
unknown groupings or patterns in a dataset. However, unsupervised
machine learning segmentation results may or may not correspond to
the type of desired groups, such as coral living/non-living cover
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Fig. 3. - Airborne Fluid Lensing and Machine Learning Classification Algorithm Methodology. (A) Airborne fluid lensing data captured from sUAV. (B) fluid
lensing removes ocean wave distortion and increases instrument SNR and effective spatial resolution by exploiting refractive lenslets. (C) A cm-resolution 3D
multispectral image is created. 2D orthorectified RGB image and DEM generated. (D) Approximately 1% of data from (C) are manually trained and classified into reef
morphology classes of branching coral, mounding coral, sand, and rock. A supervised machine learning algorithm (MAP estimation) using 3D (RGB) and 4D
(RGB + DEM) training data is used to segment entire survey area in ML test area. (E) Final automated segmentation results are compared to a manually segmented

reference map for error quantification and algorithm product validation.

classification, or even the number of desired segmentation classes.
Further, quantifying the error of unsupervised machine learning out-
puts relies on direct comparison to a manually segmented and validated
ground truth dataset. As input dataset dimensionality increases, such as
with hyperspectral remote sensing instruments, algorithm segmentation
behavior can be non-intuitive.

For this study, we employ supervised machine learning for multi-
class classification using training data from each output class. In su-
pervised machine learning, algorithms rely on manually provided
training data, such as a database of reference examples of particular
coral morphologies, to segment a larger, unclassified dataset.
Supervised algorithms can be broadly classified into one of three
models — geometric, probabilistic or logical (Flach, 2012), and include
methods such as naive-Bayes and support vector machines (SVM)
(Cortes and Vapnik, 1995), among others. SVM methods achieved re-
gional coral discrimination accuracies as high as 93% on multispectral
WorldView-2 imagery with effective spatial resolutions of ~2m (Collin
and Planes, 2012) using a pre-defined set of N-dimensional features to
characterize training data. In many supervised learning approaches, the
amount of training data, as well as the criteria through which they are
chosen, directly affects the outcome of a classification method. For
applications involving aquatic systems, particularly coral reefs, training
data should capture all the defining characteristics of a particular class,
such as branching coral, while minimizing structural outliers and re-
dundancy. A crucial advantage of an approach that requires validated
and manually segmented data as part of the algorithm is that general-
ized and experimental classification error can be rigorously quantified,
such as with a confusion matrix or contingency table (Beijbom et al.,
2012).

In this paper, we implement a probabilistic naive-Bayes supervised
model and focus on the implementation of a supervised multi-class al-
gorithm developed specifically for an efficient and accurate automated
approach to segmenting cm-resolution 3D multispectral imagery from
airborne fluid lensing data. Multi-class segmentation of coral reefs over
regional areas has been demonstrated using 4m-resolution multi-
spectral satellite remote sensing for four to fifteen benthic morphology
classes (Andréfouét et al., 2003) while statistical image processing has
been shown to effectively quantify binary indicators such as living
versus nonliving cover of coral (Joyce et al., 2013). The method

presented here examines both two-class and four-class thematic maps of
an interrogated region of interest within a coral reef.

2. Methods

We implemented a supervised machine learning algorithm through
a probabilistic naive-Bayes-based method for automated segmentation
of cm-resolution 3D multispectral imagery generated by airborne fluid
lensing. Publicly available airborne fluid lensing datasets and ground-
truth data (reference data) from a 2013 field campaign conducted over
the coral reef of Ofu Island, American Samoa are used for algorithm
input, training, and validation purposes (Chirayath and Earle, 2016;
NASA Ames Laboratory for Advanced Sensing, 2016).

The algorithm is designed to produce two data products from the 3D
imagery. The first product is a two-class living versus nonliving struc-
ture map. This map is used to derive percent cover, defined as the ratio
of living structure, e.g. Porites and Acropora coral genera and turf algae,
to non-living structure, representative of depauperate environments,
e.g. basalt rock, sand, and bleached coral, in a 2D orthorectified image.
The second product, coral reef morphology, segments reef morphology
into four distinct classes of branching coral, mounding coral, rock, and
sand. The products of the algorithm are validated through error analysis
with in situ ground-truth mapping and underwater photogrammetry of
the surveyed areas from the 2013 campaign. 3D classification is
achieved by masking 2D results over 3D bathymetry model.

2.1. Airborne fluid lensing American Samoa field campaign & dataset

The survey region and flight transects from the 2013 campaign are
shown in Fig. 2 and include in situ underwater photogrammetry and
manual habitat mapping survey locations indicated in green. Flight
transects represent the path of a SUAV survey with an airborne fluid
lensing payload. Airborne fluid lensing outputs, namely a 2D and 3D
multispectral image, depth elevation, or bathymetry model (DEM), and
georeference data, are the primary data used for testing the algorithm.
A 25m by 125 m section of the 2013 airborne fluid lensing dataset, the
green area inscribed in Fig. 2C, are used as test data throughout this
work. The 2D image size for this ML test area comprises 3000 x 13600
pixels with an effective spatial resolution of ~1cm/pixel. In situ habitat
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Fig. 4. - Supervised Machine Learning Classification Algorithm using 3D (RGB) MAP Segmentation. (A) The training database data are plotted and colored
according to their morphological class in RGB space. Here, the training database data show some clustering behavior in RGB space and are used in MAP estimation to
determine segmentation of test data. MAP segmentation compares test data within a bin to the training database and assigns these points to a class. (B) Here, the test
data are segmented and colored according to the MAP segmentation algorithm and plotted in RGB space. A complex clustering in RGB space is observed for these
segmented data and follows the training database in shape, as expected for a MAP-segmentation-based approach. 4D MAP segmentation, with RGB and DEM data, is
similarly performed in four dimensions, but difficult to visualize. The methodology presented here is expandable to n-dimensions for higher-dimensional data, such as
additional color bands and hyperspectral data. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this

article.)

mapping data from underwater maps and manual segmentations into
mounding coral, branching coral, rock, sand, living structure, and non-
living structure classes were used to form a reference map. This map is
used to quantify the accuracy of automated segmentation and classifi-
cation from airborne fluid lensing data using the machine learning al-
gorithm. An illustrated outline of the data pipeline used in this study,
summarizing input data source and products, is shown in Fig. 3.

2.2. Ground truth reference map creation through manual segmentation

The spatial distribution of living versus nonliving cover and coral
reef morphology are validated through error analysis with in situ ha-
bitat mapping and underwater photogrammetry from surveyed areas in
the 2013 field campaign. Manual segmentation is performed over a 41
megapixel 2D orthorectified RGB color image of the survey area from
the airborne fluid lensing dataset at a scale of ~1cm/pixel. In the 2013
field campaign, extensive underwater surveys were performed to vali-
date 2D and 3D data generated by airborne fluid lensing. High-resolu-
tion mm-resolution underwater panoramas were taken throughout
survey regions, as shown in Fig. 2D and E, and compared to fluid len-
sing reconstructions for reference map generation. Reference map
pixels were mapped to the four morphological classes manually by
qualitative observation and pixel-based median averaging of individual
classifications performed by M. Dick, T. Bieri, A. Pelos, and V. Chir-
ayath using the 2013 airborne fluid lensing data concurrent with in situ
underwater photogrammetric survey data. All reference map data and
test data are publicly available online (NASA Ames Laboratory for
Advanced Sensing, 2016).

Per-pixel visual inspection of the image and comparison to

underwater panoramas is used to verify classes. A two-class manual
segmentation map is generated as a superclass from the four-class
benthic map, wherein branching coral and mounding coral are classi-
fied as living structure and rock, and sand are classified as nonliving
structure. The manual four-class segmentation map is shown in Fig. 6D,
where blue represents sand, constituting carbonate sediment and sili-
cate mineral grain, red designates rock, chiefly basalt rock, yellow de-
notes mounding coral, such as Porites, and teal corresponds to
branching coral, such as Acropora. The two-class superclass map of
nonliving and living structure is designated in black and white, re-
spectively.

2.3. Supervised machine learning algorithm for automated percent coral
cover & coral morphology segmentation

Unlike geometric unsupervised models, such as k-means, support
vector machines, or logical models, such as decision trees, or condi-
tional rules, this class of Bayesian-based probabilistic algorithm uses a
designated set of training data to gather information about the under-
lying behavior of a system. Support Vector Machines, a commonly used
predictive model in machine learning studies, are applicable to datasets
containing classes that are nearly linearly separable, and segmentations
that require binary classification (Cortes and Vapnik, 1995). There are
promising steps forward in improving multi-class SVM learning models
(Hsu and Chih-Jen Lin, 2003), although this limitation, coupled with
the relative computational efficiency of probabilistic models, ultimately
makes a supervised naive-Bayes predictive algorithm a well-suited
choice for achieving the efficient and accurate multi-class classification
pursued in this study.
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Fig. 3 presents an overview of the supervised machine learning
approached used. Airborne fluid lensing 3D image data are combined
with multidimensional maximum a posteriori (MAP) estimation to
distinguish four distinct coral reef morphologies. This automated pro-
cess is aided by a pre-classified subset of manually segmented training
images, called the training set, consisting of approximately 1% of the
total dataset size. The training set consists of a random distribution of
ten 100px by 100px regions of interest as determined by our script that
are then manually classified by the dominant morphology present into
the four classes of interest from the reference map. The training set for
this study is available in the supplemental data.

MAP estimation classifies 3D test data pixels based on normalized
RGB color values and depth information from the training set, and is
governed by the following equation:

Ymap = argy maxP(Y1X) = arg,maxP (X|Y)P(Y)

where y,.» € Y,Y is the examined class, X is the set of observed values
from the training set and maxP(YIX) is the maximum a posteriori
probability.

Both the training set and test data are plotted in 3D RGB space and
in 4D RGB + DEM space. The space is subdivided into either 162 (RGB)
or 16* (RGB + DEM) equally spaced bins. Each bin is assigned to one of
Ny classes, determined using the normalized quantity of training set
data of a particular class that falls within it. Unidentified query pixels
from the test data are similarly binned based on color value and relative
depth and are assigned to the majority class of the corresponding bin.
The majority class maximizes the conditional probability P(Y|X) and
determines the class of each query pixel from test data (Fig. 4).

A description of the classification algorithm, including all associated
governing equations, parameters and variables, is outlined in pseudo-
code in Fig. 5, where:

Y = set of identifier classes X = training set

Naive-Bayes Maximum a Posteriori (MAP) Estimation

//Appropriate training set in n-dimensional space
001 for each classifiery, € Y
002  for each element x,, ,, € {X1y , -, XN, y,}

003 //find the closest bin
004 lirain = argmbin [b— xnoyul
005 update the bin score

006 Cly, = Cly, + 1

//Classify the test set

007 for each element x, € X,

008 //find the closest bin

009 lies: = argmgn |b—x,]|

010 extract the majority classifier
011 Yusp = argmax(c,())

012  //assign classifier to test element
013  assign class yyap to Zyef

Fig. 5. - Automated Coral Reef Segmentation Algorithm using a Naive-
Bayes MAP Estimator. This pseudocode outlines the supervised machine
learning algorithm used for automated four-class and two-class coral reef
segmentation, based on a MAP estimation methodology. User-provided n-di-
mensional training data, the training database, determine the boundaries and
regions assigned to a particular classifier given a user-defined bin number. In
this study, a user classifies 1% of the test data for the training database. The
number of bins divides the n-dimensional space into as many equally sized
regions. Then, unclassified test data is mapped to a classifier region within this
space for all test data. The algorithm is highly parallelized as bin size can be
iteratively subdivided.
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Xt = unclassified test data b = bin location in RGB or RGB

+ DEM space
I = index of the closest bin C = bin scores

Nj, = number of identifier bins N, = |Y|

N, = number of elements in each training set class

X contains the color values of each element in the training set which
is separated into N, identifier classes. C tallies the number of training
set elements that are assigned to each bin, and the column that contains
the maximum value of any row c; determines the class of elements in
Xeest- If ¢ (y) maps the training class index y to its associated bin score in
c;, then the assigned class can be expressed as argmax c(y). Unclassified

pixels from the test data, x, are binned based oyn their corresponding
color and relative depth value, and are assigned a class based on pixels
with similar values from the training set X, with the resulting classifi-
cation estimate denoted as X,,. Pixels are only guaranteed to be clas-
sified if the bin contains training set data. Any unclassified bins, caused
either by a small amount of training set data or small bin size, are as-
signed to one of the existing classes by default, which are defined in this
study as nonliving structure and sand for two-class and four-class
morphology segmentation, respectively.

i ot CINy 9}
C= [ : = :
CNp1 " CNpNy CNp
[ a1 - an
X= [ : s Xeest = {xh xz,»-,xNxm,}
XNy 1 X NNy

Using this approach, the total number of output classes is predefined
and the training set must be manually provided through reference data.
The training set determines the most probable coral reef segmentation
class within an interrogated region of interest of the test data. Processed
across all the test data, this algorithm produces a four-class coral reef
morphology map.

The coral reef studied here exhibits distinct morphological and vi-
sual features, such as color variations, shape, size, and structure, which
lends itself to classifiers that are easily separable in both three-dimen-
sional and four-dimensional space (Fig. 4). The manually classified
training set data (Fig. 4A) and corresponding test data (Fig. 4B) are
plotted in RGB color space, where pixels of a particular class are illu-
strated as colored clusters corresponding to their class.

2.4. Experimental and generalized classification error assessment

The use of an automated machine learning algorithm for classifi-
cation of high-resolution coral reef imagery requires robust error me-
trics for quantifying its ability to generate accurate segmentation re-
sults, particularly compared to those made by experts in the field. This
necessitates the generation of manually segmented reference maps
created in conjunction with contemporaneous in situ underwater sur-
veys and photogrammetry, which are often unavailable for remotely
sensed coral reefs. This study has access to concurrent datasets from
airborne fluid lensing and underwater surveys, which were used to
generate the reference map discussed earlier in Fig. 6D. This manually
segmented reference map is used to perform a pixel-by-pixel compar-
ison between the algorithm output results and the reference map, X.
The L1 error, Si; gor, is calculated for both the living structure and
coral reef morphology data products, generating a map of experimental
error such that:

n
Sp1 Error = Z |xref,i - xref,il
i=1
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Fig. 6.- Automated Coral Reef
Morphology Classification. (A) Highest-
resolution publicly-available image of
survey area captured June 2015 from
Pleiades-1A satellite with 0.5 m effective
spatial resolution. (B) Airborne fluid lensing
2D orthorectified image as captured from
sUAV in August 2013 airborne field cam-

B)

Airborne Fluid
Lensing Image

C)

Airborne Fluid
Lensing DEM

D)

Manual
Segmentation

E)

3D (RGB) MAP
Segmentation

F)

4D (RGB+DEM)
MAP Segmentation

Both the experimental and generalized error were calculated as a
means for quantifying classifier performance. To determine the gen-
eralized classifier error, test data from regions corresponding to the
manually segmented images from the training set are reclassified. In
other words, let X, 2 Xy, Where X,,, contains the original pixel
values in the training set, and perform automated classification on X
using lines 007-013 from Fig. 5. The resulting reclassified set X, and
the generalized error, Sgeneraiized, is defined as the L1-norm of this result
such that:

n
Sgeneralized = z X — Xil

i=1

This equation not only assesses the quality of the manually selected
training set, but also produces a metric for quantifying the generalized
error of the algorithm based on the size of training set used. Further
quantification of inter-class error for the algorithm is determined from a
confusion matrix, providing a breakdown of the algorithm's accuracy by
classifier and the relative percentages of identified false positives and
false negatives.

paign with 0.5-3 cm effective spatial re-
solution. (C) Airborne fluid lensing 3D
image converted to 2D bathymetry model
(depth elevation model, DEM) with 3-5 cm
effective spatial resolution. (D) Manually
segmented reference map based on under-
water photogrammetry, in situ survey data
and visual inspection of (B) and (C). (E)
Supervised machine learning algorithm
classification result using 3D (RGB) test
data with training set size equivalent to
~1% of test data size. The result segments
the coral reef into four distinct morpholo-
gical classes: branching coral, mounding
coral, rock, and sand. (F) Supervised ma-
chine learning algorithm classification re-
sult using 4D (RGB + DEM) test data and
same training set as (E).

pues

Buipunoy Bulyoueag

%00y

2.5. Coral reef classification accuracy as a Function of Effective Spatial
Resolution

Finally, analysis of the survey area is performed using the algorithm
with m-resolution and decameter-resolution remote sensing imagery,
representative of the effective spatial resolution of remote sensing in-
struments such as Pleiades-1A and Landsat 8, respectively. This analysis
attempts to quantify the effect of the effective spatial resolution of a
remote sensing instrument on algorithm segmentation and classifica-
tion accuracy. Algorithm classification is performed on decimated
versions of the airborne fluid lensing test data to model how the ef-
fective spatial resolution of other remote sensing instruments impacts
classification error. Decimation of the cm-resolution airborne fluid
lensing data is performed by convolution with a Gaussian filter, of
kernel size equivalent to decimated effective spatial resolution. In this
study, only 3D RGB data are used as test data. The decimated meter-
resolution and decameter-resolution imagery is shown in Fig. 12. The
St1Eror Of the 3D RGB algorithm classification is compared for all re-
solutions of the decimated test data. For each instrument chosen in
Fig. 12, the best-case scenario for effective spatial resolution is chosen.
Additional noise considerations, atmospheric scattering, and absorption
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are not modeled to allow for direct comparison to airborne fluid lensing
resolution. The algorithm training set remains constant for each deci-
mated test data classification.

3. Results

The results of the supervised machine learning algorithm applied to
the entire ML test area are presented in Fig. 6. The highest-resolution
publicly available satellite image, m-resolution imagery captured by
Pleaides-1A in June 2015, is shown in Fig. 6A. ML test area 2D imagery
from the cm-resolution 2013 airborne fluid lensing data is shown in
Fig. 6B for comparison. The ML test area bathymetry model (DEM),
converted from the 3D cm-resolution 2013 airborne fluid lensing data,
is shown in Fig. 6C. Fig. 6D presents the result of the manual seg-
mentation, used for algorithm error analysis, performed on a pixel-by-
pixel basis for over 40.8 million pixels with an effective spatial re-
solution of ~1cm/pixel.

The results of the coral reef morphology classification, using both
three-dimensional (3D, RGB) and four-dimensional (4D, RGB + DEM)
training vectors are presented in Fig. 5E and F, respectively. Mapping
results from categorizing mounding and branching coral morphologies
into the superclass of living structure and rock and sand morphologies
into the superclass of non-living structure for both RGB and
RGB + DEM segmentations are presented in Fig. 7.

A more detailed comparison between three-dimensional and four-
dimensional segmentation results is depicted in Fig. 8 at the boundary
of three distinct morphological classes.

Fig. 9 presents the integrated percent cover and coral reef mor-
phology breakdown for the entire ML test area. Integrated two-class and
four-class segmentation maps show 36.5% percent of the test area
contains living coral structure, where mounding coral represents 18.9%
and branching coral represents 17.6% of the reef, respectively, versus
63.5% non-living structure, where rock represents 3.2% and sand re-
presents 60.3% of the reef, respectively.

The experimental and generalized error is examined for 3D MAP
segmentation as a function of training set size for verification of su-
pervised machine learning algorithm robustness and appropriate se-
lection of training set size. The generalized and experimental errors
converge at approximately 10% error (Fig. 10A) using ten 100px by
100px training images per class, and thus this training set size is used
throughout the study. The effect of MAP segmentation binning resolu-
tion on 3D MAP segmentation classification accuracy is examined. As
bin resolution increases, L1 error reduces significantly at first, then
negligibly beyond 27000 bins (Fig. 10B). These results support the

(A)

Percent Cover, 3D (RGB)
MAP Segmentation

(B)

Percent Cover, 4D
(RGB+DEM) MAP
Segmentation
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choice of training set size, ~1% of the total test data, and algorithm
total bin number for MAP segmentation. Finally, a pixel-by-pixel con-
fusion matrix error analysis is conducted on 3D and 4D algorithm
segmentation results using the manually segmented reference map as
ground-truth data (Fig. 11).

Confusion matrices for the 3D four-class morphology segmentation
show a normalized within-class accuracy over 70% for within-class
morphology classifiers (Fig. 11A), with sand showing the strongest
correlation between the automated segmentation result and the
manually segmented reference map with an accuracy of 96%. Adding
bathymetric information (4D segmentation) produces a lower overall
error in structures with distinct morphological differences, especially in
regions containing basalt rocks (Fig. 11B).

Analysis of the survey area is performed using the algorithm with m-
resolution and decameter-resolution remote sensing imagery, re-
presentative of the effective spatial resolution of remote sensing in-
struments such as Pleiades-1A and Landsat 8, respectively. Fig. 12
compares algorithm S;; g, for different spatial resolution imagery
from cm-resolution airborne fluid lensing to decameter-resolution
imagery characteristic of Landsat 8. Fig. 12 indicates that m-resolution
and decameter-resolution imagery produce markedly lower percent
cover and morphology classification with < 68% accuracy, as com-
pared to > 92% classification accuracies with cm-resolution airborne
fluid lensing data. The accuracy of the classification for m-resolution
and decameter-resolution imagery is in agreement with similar results
in literature (Mumby et al., 1997).

4. Discussion

The supervised machine learning algorithm developed here, based
on multidimensional naive-Bayes MAP estimation, is able to accurately
classify coral reef morphologies and percent living cover from airborne
fluid lensing data with centimeter resolution. The automated segmen-
tation results presented in Fig. 6, and error analysis presented in
Fig. 11, demonstrate that the algorithm and airborne fluid lensing are
capable of segmenting complex coral reef morphologies and distin-
guishing living coral using remote sensing with > 92% accuracy
(Fig. 12).

Percent cover of living coral has a significant influence on the
ecology of a reef ecosystem (Bell and Galzin, 1984) and the morphology
class of a coral can be a reliable predictor of species richness and habitat
complexity (Edinger and Risk, 2000). The presented methods ulti-
mately allow for an understanding of these two important metrics at the
cm-scale over regions tens of square kilometers in area. Cm-resolution

ainjonas
Buinr

ainjonns
Buinluon

Fig. 7. - Automated Coral Reef Percent Cover Classification. Percent cover is determined as ratio of living structure (white), consisting of branching and
mounding coral morphologies, to nonliving structure (black), consisting of rock, and sand classes. This binary classification is the superclass of morphology subclasses
in Fig. 6 (A) Algorithm classification result for percent cover using 3D (RGB) test data. (B) Algorithm classification result for percent cover using 4D (RGB + DEM)

test data.
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Raw Airborne Image Fluid Lensing Image

A)

Manual
Segmentation

3D (RGB) MAP Segmentation
Raw Airborne Image  Fluid Lensing Image

3D (RGB) MAP Percent Cover
Raw Airborne Image Fluid Lensing Image

Manual Percent
Cover
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63.5% Sand/Other

60.3%

Fig. 9. - Coral Reef Morphology & Percent Cover Result. Automated coral
reef segmentation results over entire test dataset. Percent cover breakdown of
living structure (white) and nonliving structure (black). Coral reef morphology
breakdown into branching coral, mounding coral, rock, and sand classes from
3D MAP segmentation.

thematic mapping of coral reefs has been demonstrated from numerous
underwater survey methodologies before (Beijbom et al., 2015; Burns
et al., 2015; Shihavuddin et al., 2013). However, to date, this work
presents the first validated cm-resolution automated mapping of a coral
reef from a remote sensing dataset. Sensitivity to cm-scale features over
large geographic areas accessible by airborne remote sensing presents
novel observational and quantitative health assessment capabilities for
reef ecosystems. Indeed, accurate automated determination of coral
reef percent cover and morphology type may lead to a significantly
improved understanding of short timescale reef ecosystem status,

Fluid Lensing DEM

D (RGB+DEM) MAP
Segmentation

4D (RGB+DEM) MAP
Percent Cover

10
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Figs. 8. -3D and 4D Classification Result
Detail. (A) Inset showing 2D image with

1.8m
sand class and two adjacent coral
morphologies classes of branching and
MSL mounding corals in close proximity. DEM

for same inset region, showing stratification
of morphologies with depth in this case. (B)
Comparison of manually segmented mor-
phology map versus 3D and 4D automated
MAP segmentation results. (C) Comparison
of manually segmented percent cover su-
perclass versus 3D and 4D automated MAP
segmentation results.
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dynamics, and fine spatial scale abundance and distribution.

Additional benthic classes, such as species level segmentation, are
not explored in this study, but the algorithm design provides an n-di-
mensional framework for further input training set classes and seg-
mentation outputs. While the addition of multispectral data is unlikely
to improve species level detection, hyperspectral data may offer species
level discrimination when incorporated into such a benthic mapping
algorithm (Kutser et al., 2006). Indeed, the algorithm may benefit from
additional dimensionality in color bands as relative depth information
did not appear to significantly improve classification accuracy (Fig. 11)
in the case of branching and mounding coral segmentation, possibly
due to their less pronounced heterogeneity in depth. In this case, 4D
MAP segmentation produced lower within-class accuracies as compared
to 3D MAP segmentation, despite the added dimensionality (Fig. 11B).

An examination of algorithm -classification using m-scale and
decameter-scale remote sensing imagery, as examined in Fig. 12, sug-
gests low-resolution remote sensing instruments quantify coral reef
percent cover and morphology with < 68% accuracy. Using the algo-
rithm for percent cover assessment of Landsat-class remote sensing
imagery, with a typical effective spatial resolution between 10 and
30 m, results in a classification error of 35%, in agreement with results
from literature (Mumby et al., 1997). Interrogation of the automated
and manually segmented maps indicates that error from lower-resolu-
tion imagery poorly captures boundary separations between morpho-
logical classes in coral reefs. These results suggest that the algorithm
and cm-resolution airborne fluid lensing data offer a favorable four-fold
decrease in error for morphology classification and a seven-fold de-
crease in percent cover error as compared to m-resolution and deca-
meter-resolution imagery. However, as a remote sensing method, there
are still limitations of this combined approach to observing turbid
benthic habitats and remains ultimately limited by the inherent optical
properties of the aquatic system being observed.

Considering many current global coral reef health assessment
methods and projections are based on low-resolution global datasets
(Pandolfi et al., 2003), there is a strong motivation to use cm-scale
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3D MAP Segmentation Experimental and
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3D MAP Segmentation Experimental Error
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Fig. 10. - Experimental and Generalized Algorithm Error as a Function of Training Database Size and Bin Size. (A) To determine the appropriate size of the
training database for supervised machine learning with 3D MAP segmentation, the L1 error within each class is determined as a function of training database size.
The experimental error measures the L1 error between the 3D MAP segmentation result and the reference map using the training database as the supervised input.
The generalized error measures the L1 error between the training database and itself, which reveals errors arising from variance inherent in the dataset. The
intersection of these two curves occurs with approximately ten 100px by 100px training images per class, corresponding to ~1% of the total dataset size. These
results justify the choice of training set size as increasing database size does not necessarily increase segmentation accuracy, likely due to the increase in variance
within the training database. (B) The effect of binning resolution on MAP segmentation error. 3D MAP segmentation is performed by n-dimensional binning of data

by nearest training database point.
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methodologies to better assess reef health. The results from Fig. 12
indicate existing global remote sensing methodologies do not suffi-
ciently resolve coral reef systems for accurate determination of percent
cover of living structure and morphology breakdown at fine spatial
scales. While surveying all of planet's coral reef ecosystems at the cm-
scale may be impractical using airborne fluid lensing, the methodology
presented here offers a valuable tool for error quantification of ongoing
lower-resolution airborne and spaceborne remote sensing campaigns
studying coral reef ecosystems and motivates the maturation of air-
borne fluid lensing and comparable remote sensing technologies. Fine-
scale coral reef mapping may also have applications to the augmenta-
tion of low-resolution mapping data using a supervised machine
learning approach. Such a scheme may allow for the augmentation of
low-resolution global aquatic remote sensing data using geographically
distributed high-resolution localized airborne datasets as training sets
for error reduction of automated reef classification algorithms (Li et al.,
2016).

A forthcoming follow-on project, NeMO-Net, the NASA Neural
Multimodal Observation and Training Network, uses deep convolu-
tional neural networks and airborne fluid lensing for automated global

Confusion Matrix for 4D (RGB+DEM)

S =Sand
B = Branching
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Fig. 11.- Algorithm Error Analysis -
Confusion Matrices for 3D and 4D MAP
Segmentation Results. (A) Confusion ma-
trix for 3D (RGB) MAP segmentation shows
strong in-class classification accuracy for all
morphology types as compared pixel-by-
pixel to reference map. Values approaching
unity along the diagonal elements indicate
ideal accuracy. (B) Confusion matrix for 4D
(RGB + DEM) MAP segmentation shows
improved performance in segmenting rock
structures as compared to the 3D result.
However, the added dimensionality of the
segmentation introduces a larger variance
between mounding and branching classes,
reducing the accuracy of within-class
branching and mounding classification ac-
curacy in this case.

MAP Segmentation
Predicted
B M

0.81

M = Mounding
R = Rock

coral reef assessment (Chirayath et al., 2018a, 2018b, 2017). NeMO-Net
is an open-source deep convolutional neural network (CNN) and in-
teractive active learning training software in development which will
assess the present and past dynamics of coral reef ecosystems. NeMO-
Net exploits active learning and data fusion of mm-scale remotely
sensed 3D images of coral reefs captured using fluid lensing with the
NASA FluidCam instrument, as well as hyperspectral airborne remote
sensing data from the NASA MiDAR instrument (Chirayath, 2018;
McGillivary et al., 2018) and lower-resolution satellite data, to de-
termine coral reef ecosystem makeup globally at unprecedented spatial
and temporal scales.

Further enhancement of automated coral reef segmentation is pos-
sible through algorithm improvement and aquatic remote sensing
technology development. Based on the results of Fig. 12, the low error
observed using the supervised approach for coral reef segmentation is
established to arise from the fine resolution of the airborne fluid lensing
input test data. This suggests that reef segmentation error reduction is
possible with even higher effective spatial resolution remote sensing
and in situ underwater survey technologies. In the short term, however,
error reduction in reef assessment is likely to be driven by refinement of
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Fig. 12. - Algorithm Classification Error as a Function of Effective Spatial
Resolution. Algorithm classification is performed on decimated versions of the
airborne fluid lensing test data to model how the effective spatial resolution of
other remote sensing instruments impacts classification error. In each case, the
best-case scenario for effective spatial resolution of the instrument is chosen.
Additional noise considerations, atmospheric scattering, and absorption are not
modeled and the training set for the algorithm remains the same. As 3D MAP
segmentation is performed on these decimated datasets, the L1 classification
error for percent cover grows to greater than 35% at typical Landsat resolution
and 10-20% for commercial satellite imagery, as compared to 5% for airborne
fluid lensing. This relationship suggests that current remote sensing instruments
may be subject to classification errors many orders larger than that afforded by
airborne fluid lensing.

supervised machine learning methodologies.

The algorithm output using 3D MAP segmentation achieved ap-
proximately 95% accuracy for percent cover determination, but the 4D
MAP segmentation result, incorporating bathymetric data, did not
further reduce the segmentation error (Fig. 11) as expected. While n-
dimensional supervised classification of coral morphologies has been
shown to achieve accuracies as high 85% using similar naive-Bayes
methods (Collin and Planes, 2012), the incorporation of higher di-
mensionality input data often introduces variances that significantly
reduce the accuracy of naive-Bayes approaches as output segmentation
class number increases (Friedman, 1997). Increasingly popular machine
learning approaches using neural networks may be more robust to the
added dimensionality of input data than naive-Bayes methods (Richard
and Lippmann, 1991) and are an area for future research. Ultimately,
provided sufficient training data, neural networks may offer more ac-
curate automated segmentations of ecosystems using n-dimensional
input data (Serpico and Roli, 1995) and n-output classes.

As predictive learning algorithms continue evolving, challenges
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persist in incorporating such methods effectively and efficiently
(Cherkassky et al., 2006), especially as new remote sensing technolo-
gies, such as airborne fluid lensing, introduce petabyte-scale datasets
for regional areas. The processing of such large datasets, fortunately, is
increasingly supported through governmental agencies, such as NASA's
Earth Exchange (NEX), which provides advanced supercomputing re-
sources for Earth Science research, as well as non-governmental dis-
tributed computing networks, such as the Berkeley Open Infrastructure
for Network Computing (BOINC), which hosts a number of distributed
computing projects. Moreover, creating a sufficient amount of training
set data and reference maps with manual segmentation by subject-
matter experts for algorithm automation and validation is increasingly
difficult. Online citizen-science platforms, such as Zooniverse.org, have
addressed this concern in other fields through citizen science initiatives,
including Project Galaxy Zoo, Project Planet Hunters, animal classifica-
tion through Snapshot Serengeti (Swanson et al., 2015), and kelp iden-
tification through Project Floating Forests. These projects crowdsource
image analysis to citizen-scientists and have built-in filtering to ensure
training data integrity by comparison to subject-matter expert classifi-
cation results. NASA's upcoming NeMO-Net project will leverage
crowdsourced citizen-science inputs for coral classification (Chirayath
et al., 2018a).

5. Conclusions

Airborne fluid lensing technology has enabled cm-resolution mul-
tispectral 3D remote sensing of aquatic systems without refractive dis-
tortions from ocean waves. However, while datasets generated by air-
borne fluid lensing provide an order of magnitude increase in the
effective spatial resolution for remote sensing of aquatic environments,
they require efficient petabyte-scale machine learning tools for data
products such as percent cover and morphology identification over
regional scales.

Here, a highly-parallelized multidimensional supervised machine
learning algorithm was developed based on naive-Bayes maximum a
posteriori (MAP) estimation for automated coral reef segmentation.
Using airborne fluid lensing data from a 2013 field campaign conducted
over the coral reef of Ofu Island, American Samoa, the algorithm gen-
erates cm-resolution maps of the spatial distribution of living structure
and coral reef morphological structure with high accuracy.

Provided a user-selected training subset of 3D multispectral images,
comprising close to 1% of the total dataset, the algorithm discriminates
living structure from nonliving structure with 95% accuracy and seg-
ments the coral reef into four distinct morphological classes of
branching coral, mounding coral, basalt rock, and sand, with 92% ac-
curacy (Fig. 12). The user-selected training data and algorithm classi-
fication results are created and verified, respectively, with sub-cm-re-
solution ground-truth maps, manually generated from in situ mapping,
underwater gigapixel photogrammetry, and per-pixel visual inspection
of the 3D dataset.

By comparison, analysis of the survey area using the algorithm and
m-resolution and decameter-resolution remote sensing imagery, re-
presentative of the effective spatial resolution of remote sensing in-
struments such as Pleiades-1A and Landsat 8, respectively, produces
markedly lower percent cover and morphology classification with <
68% accuracy, as compared to cm-resolution airborne fluid lensing
data with > 92% accuracy. These results suggest existing methodolo-
gies do not sufficiently resolve the complex morphological and bathy-
metric diversity of coral reef systems at the cm-scale, characteristic of
the annual growth rate of such ecosystems. Such data are needed for the
accurate determination of percent cover of living structure and mor-
phology breakdown.

Ultimately, the data products and methods presented allow for an
understanding of cm-scale coral reef status and reef dynamics over re-
gions tens of square kilometers in area. Sensitivity to such fine-scale
features presents novel observational and quantitative health
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assessment capabilities for reef ecosystems. Accurate automated de-
termination of percent cover and morphology distribution may lead to a
significantly improved understanding of fine temporal-scale reef eco-
system dynamics in a rapidly changing global climate.

Finally, this work motivated the development of a follow on in-
vestigation, NASA NeMO-Net, the NASA Neural Multimodal
Observation and Training Network, that uses deep convolutional neural
networks and airborne fluid lensing to extend this work further for
automated global coral reef assessment across twenty-four benthic
classes (Chirayath et al., 2018a, 2018b, 2017). NeMO-Net's open-source
deep convolutional neural network (CNN) and interactive active
learning training software will assess the present and past dynamics of
coral reef ecosystem. NeMO-Net leverages an augmented machine
learning algorithm, based on transfer learning and domain adaptation,
that demonstrates data fusion of regional FluidCam (mm, cm-scale)
airborne remote sensing with global low-resolution (m, km-scale) air-
borne and spaceborne imagery to reduce classification errors up to 80%
over regional scales (Chirayath et al., 2018a, 2018b, 2017). This
methodology permits a small number of airborne fluid lensing field
campaigns to augment the accuracy of coral classification from existing
regional and global datasets from commercial and government sa-
tellites.
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