year	1-5 cm	5-10 cm	10-20 cm	20-40 cm	40-80 cm	80-160 cm	> 160 cm	Total
1995	3427	5156	4594	1309	178	27	1	14692
2002	4001	2876	2180	1324	557	83	15	11036
2018	1056	5055	1920	1406	414	84	25	9960
grand total	8484	13087	8694	4039	1149	194	41	35688

Table S1 - Size distributions of coral colonies on 5 islands and an atoll in American Samoa during three years.

Table S2 – The distribution of 800 coral recruits on CCA and other hard substrata

	surface	coral recruits		
	cover	observed	expected	
Crustose coralline algae	32%	754 (94%)	256	
All other surfaces	68%	46 (6%)	544	

Chi-square = 1422, df = 1, p< 0.001

Table S3 – Numbers of colonies of fast-growing, branching corals (*Acropora* and *Pocillopora*, 14 spp.) and slow-growing massive or encrusting corals (massive *Porites, Diploastrea, Leptastrea, Astrea, Dipsastrea, Favites, Goniastrea, Cyphastrea, Acanthastrea, Coscinaraea, Pavona* and *Psammocora*, 26 spp.). Relative prevalence of fast-growing to slow-growing colonies remarkably consistent between years.

fast-growing corals	1995	2002	2018	slow-growing corals	1995	2002	2018
Afuli	13	72	9	Afuli	57	110	21
Amanave	30		12	Amanave	33		12
Amouli			7	Amouli			15
Aoa			7	Aoa			32
Asaga	41	30	20	Asaga	62	124	30
Aua	7	4	4	Aua	26	19	25
Aunu'u	37	98	16	Aunu'u	59	52	25
cove	27		19	cove	27		24
Faga	25	10		Faga	59	28	
Faga'alu	21	34	1	Faga'alu	24	32	16

Fagafue	5	22	7	Fagafue	31	26	17
Faga'itua	17	29	23	Faga'itua	17	25	27
Fagamalo		48		Fagamalo		115	
Fagasa	15	5	7	Fagasa	47	31	30
Fagatele	19	25	67	Fagatele	18	28	29
Fagamafuti		31		Fagamafuti		27	
Hurricane		25		Hurricane		130	
Leloaloa	5		18	Leloaloa	23		34
Leone	27	21	12	Leone	24	41	19
Lepula		13		Lepula	74	29	
Masefau	20	25	5	Masefau	22	39	7
northwest	28		11	northwest	35		43
Nu'uuli	12	20	4	Nu'uuli			
Ofu Village	24	8		Ofu Village	38	47	
Olosega	7	15		Olosega	67	119	
Onesosopo	14	9	0	Onesosopo	28	21	37
Rose NE			17	Rose NE			20
Rose NW			42	Rose NW			56
Rose SE			7	Rose SE			17
Rose SW			24	Rose SW			39
Rose SW wreck			44	Rose SW wreck			25
Sili	46	14	17	Sili	68	85	36
Utulei	7		2	Utulei	26		20
Vatia	33	40	23	Vatia	35	48	26
Total when all 3	317	428	211		518	681	345
years surveyed							
Grand total	480	598	425		900	1176	682

SUPPLEMENTARY FIGURES

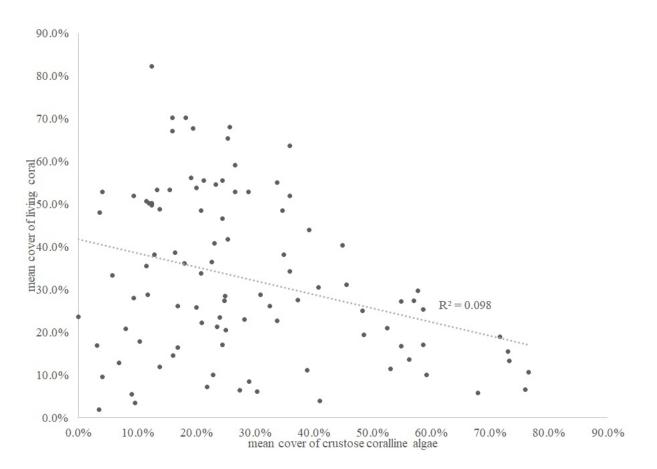


Figure S1 – There is a negative correlation between the mean percent living coral cover and the mean percent CCA

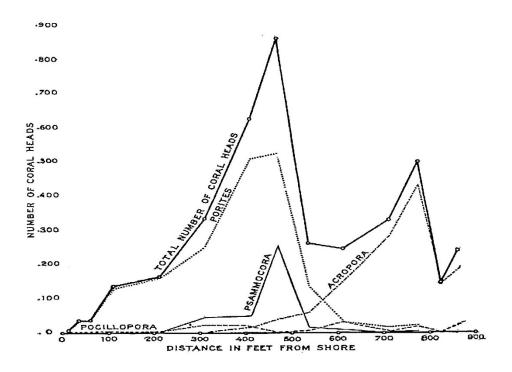


Figure S2 - In 1917, corals were most abundant on the reef flat. *Porites cylindrica* was the predominant species. (This figure is from Mayor 1924)

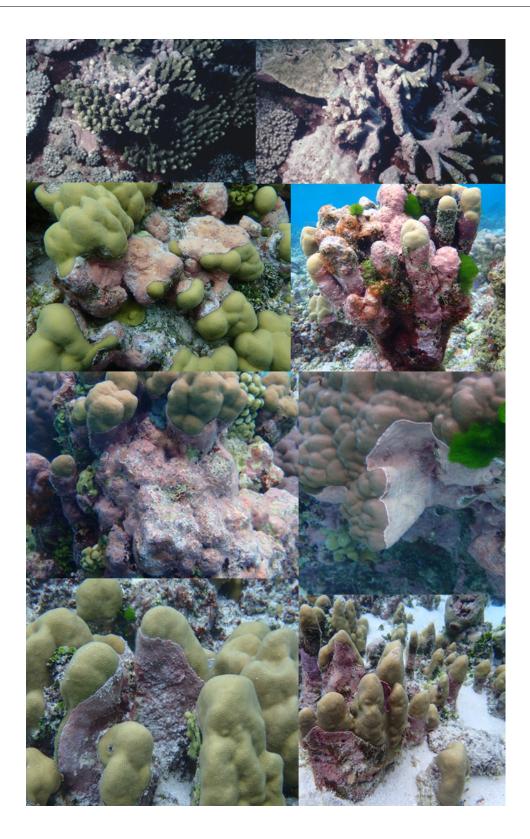


Figure S3 – In American Samoa, *Porolithon onkodes* frequently overgrows apparently healthy reef-building corals

Figure S4– The outcome of competition by overgrowth is usually determined by which organisms initially contacts the other from above. From left to right CCA overgrows a *Montipora* colony which is overgrowing CCA which is overgrowing a *Leptoria* colony

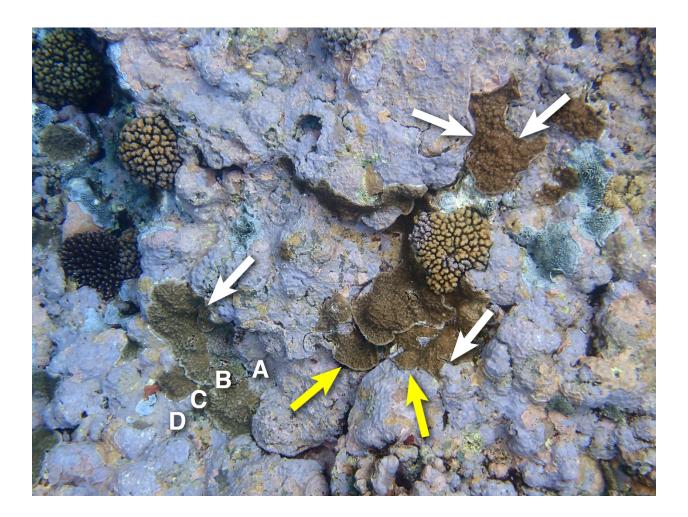


Figure S5 – Alternative outcomes of competition resulting from which is above the other in initial contact. White arrows point to CCA overgrowing coral, yellow arrows indicate coral overgrowing CCA, and the alphabetical sequence indicates a cascade of CCA overgrowing coral colony B which is overgrowning coral colony C which is overgrowing CCA

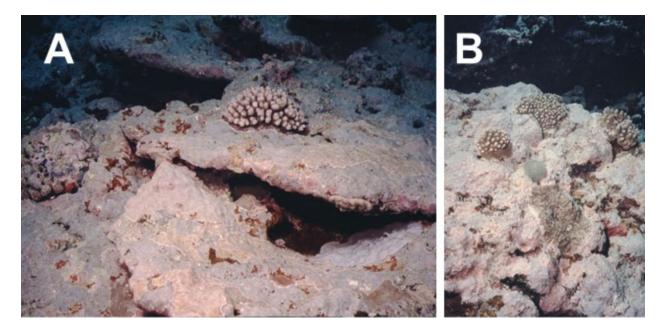


Figure S6 – Hurricane Ofa (1990) and Hurricane Val (1991) did extensive damage to reefs. In Fagatele Bay, the broken skeletons of tabletop *Acropora* were cemented into a solid substratum by *P.onkodes* and thereby, coral recruitment was successful

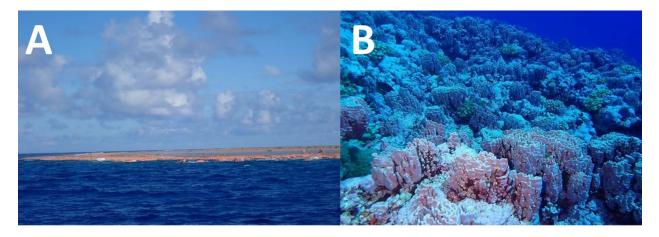


Figure S7 – A) *Porolithon onkodes* dominates the reef crest and B) *P. onkodes* and *P. craspedium* dominate the forereef slope around Rose Atoll