

FINAL PROJECT REPORT

RFQ Number: RFTGA 2012/715

AAM Project Number: 19647A

Project Name: Acquisition of LiDAR and Imagery Derived Products for PNG

Account Manager: Brett O'Hagan

Project Manager: Martin Tunwell

	Document Control		
Process Stage	Who	Role	When
Draft V1 Prepared by	Martin Tunwell	Project Manager, AAM	Sept 2012
Draft V1 Reviewed by	Brett O'Hagan	Account Manager, AAM	Sept 2012
Final Version 1	Martin Tunwell	Project Manager, AAM	Sept 2012
Final Version 2	Martin Tunwell	Project Manager, AAM	February 2013

Table of Contents

1.0	Introduction	3
2.0	Contract Specifications Confirmed	4
2.1	Category of Elevation Capture and Laser Flight Settings	4
2.2	Coverage	
2.3	Horizontal Datum	6
2.4	Vertical Datum	6
2.5	Map Projection	7
2.6	Survey Control	
2.7	Data Tiling and File naming	
2.8	Primary LiDAR Point Cloud Data	
2.9	Digital Elevation Model (DEM)	
2.10	\mathbf{J}	
2.1		
2.12		
2.10		
2.14		
2.1		
2.16		
2.17		
2.18		
3.0	Accuracy Assessment	
3.1	Project Design Accuracy	
3.2		
3.3 4.0	Check Point Analysis Metadata	
4.0		
4.1	General Capture Specifications	
4.2	Reference Systems	
4.3	Limitations of Data	
5.0	Extraordinary Issues	
5.0 6.0	•	
6.0	Other Project Information of Note	
0.1		20

1.0 Introduction

AAM was engaged by Geoscience Australia to undertake a LiDAR survey over the towns of Vanimo, Wewak, Madang and Lae in Papua New Guinea and the coastal sections that join them. Acquisition was undertaken between May 5th and July 13th 2012. Rain, low cloud and other weather related challenges were faced in this aerial LiDAR survey.

AAM deployed its Optech ALTM Orion M200 for this project. This sensor is capable of detecting multiple returns, with a minimum of 4 potential returns for each outbound laser pulse as well as recording the intensity of each return.

The planned point density for the survey was an average density of 3.3pts/m² for the town areas and 0.85pts/m² for the coastal sections. The actual average point spacing achieved was 0.43m across the 509m wide swath.

The vertical accuracy for this data set is +/-0.30m, and the horizontal accuracy is +/-0.80m. This data is presented in terms of WGS84 UTM zones 54/55 and PNGMG94 zones 54/55. The vertical data is presented in terms of WGS84 Ellipsoidal, PNG94 Ellipsoidal, MSL (EGM20008), MSL (PNG08).

This *Project Report* addresses the following topics as specified in the contract:

- 1. how each of the contract specifications has been met,
- 2. a statement of consistency with any specified standards,
- 3. results of independent accuracy tests,
- 4. metadata statements
- 5. extra-ordinary issues that may have affected the nature or delivery of the project
- 6. other project information of note.

2.0 **Contract Specifications Confirmed**

2.1 Category of Elevation Capture and Laser Flight Settings

The survey undertaken was ICSM Category 1:

- Absolute vertical accuracy: 1 sigma 0.30m or better in areas of open, flat terrain.
- Absolute horizontal accuracy: 1 sigma 0.80m or better in areas of open, flat terrain. •

The category of elevation is assigned based on based on LiDAR system specifications and settings used for project acquisition. The following Table shows the LiDAR system settings used for acquisition.

Laser Flight Settings		
Description	Towns/Coastal	Units
Sensor ID	Optech ALTM Orion M200	
Flying Height	700/1200	m
Swath Overlap	20/25	%
Swath Width	509/872	m
Scan Field of View (FOV)	40/40	Degrees
Half Scan Angle	20/20	Degrees
Scan Frequency	40/49	Hz
Maximum Number of Returns	4/4	
Echo Separation Distance	0.7/0.7	m
Footprint Size	0.162/0.3	m
Pulse Rate Frequency	150/150	KHz
Estimated Horizontal Accuracy	0.8/0.8	m
Estimated Vertical Accuracy	0.3/0.3	m
Average Point Spacing	0.42/0.85	Pts/m ²
Average Density of Ground Strikes	4.7/1.2	Pts/m ²

The Figure below displays the LiDAR system accuracy specifications as presented by Optech for the ALTM Orion M200.

Parameter	M 200
Operational envelope ^{1,2}	200 - 2500 m AGL, nominal
Laser wavelength ³	1064 nm
Horizontal accuracy ²	1/5, 500 x altitude
Elevation accuracy ²	<5-15 cm; 1σ
Effective laser repetition rate	50 - 200 kHz
Position and orientation system	POS AV™ 510 (OEM)
Conwight O	GPS/GNSS/L-Band receiver

Copyright Optech CA

1 20% reflective target

2 Dependent on selected operational parameters using nominal 50° FOV in standard atmospheric conditions 3 NOHD (unaided) = 7 m; (ANSI Z136.1-2000)

2.2 Coverage

The four town sites cover an area of approximately 629sqkm and are interconnected by the three coastal sections.

Full Site Overview

Individual Towns Overview PNG Acquisition of LiDAR and Imagery Derived Products Final Project Report

2.3 Horizontal Datum

The survey was coordinated in terms WGS84.

2.4 Vertical Datum

For data presented in WGS84 all elevation data has been presented in Mean Sea Level (MSL) EGM2008. For data presented in PNGMG94 all elevation data had been presented in MSL, PNG08. Ellipsoidal data has also been presented.

The EGM2008 Geoid Surface is significantly offset from true MSL due to Mean Dynamic Topography (MDT) of the ocean surface near to the equator. This is largely due to thermal expansion of the ocean which raises the sea level above the equipotential surface. In PNG this offset is between 0.8m and 1.5m. In 2011 a new model for PNG was released called PNG08 which is based on EGM2008 with a offset plane correction based on tide gauge measurements made around the PNG mainland, including Madang, Bogia and Aitape. The precision of the model is 0.1m at 1 σ along the North coast of PNG. Spot levels have been provided in this height datum.

MSLPNG08 = hPNG94 – NPNG94

hPNG94 – PNG94 ellipsoid height. NPNG08 – N value from the PNG08 2.5' geoid model.

The below table demonstrates the relationship between EGM2008 and PNG08 for a number of the land survey stations used. A full list of PNG08 heights is available for all of the land survey points collected.

	Point		ITRF08 Ellipsoid	PNG94 Ellipsoid		PNG08	MSL
Location	Number	Description	Ht	Ht	EGM2008	(N val)	PNG08
	ST 31024						
Nadzab	(NADZ)	GIP in conc	148.80	148.87	77.12	72.68	76.19
	ST 31021						
Bubia	(BUBI)	GIP in conc	106.84	106.91	34.86	72.99	33.92
0.1	ST 31029		100.00				
Situm	(SITU)	GIP in conc	169.80	169.87	97.68	73.11	96.75
Lae Old	ST 31022	Dallis	04.07	04.44	10.10	70.00	44.47
Airport	(LAEO)	Bolt in conc	84.37	84.44	12.40	72.96	11.47
Madang	GS 15495	brass					
Airport	(MAD1)	plaque	73.15	73.22	5.95	68.32	4.89
Aipoit	PSM	piaque	70.10	10.22	0.00	00.02	4.03
Wewak	15497	brass					
Airport	(WEWK)	plaque	83.87	83.94	6.05	79.06	4.88
	PM 63/1	P.01000					
Vanimo	(VANI)	GIP in conc	80.51	80.58	3.44	78.40	2.18
	PSM						
Unitech	9799	brass					
Sports	(9799)	plaque	130.25	130.32	58.35	72.90	57.41
Nadzab	PSM	brass					
Airport	31481	plaque	137.25	137.32	65.55	72.71	64.61
Mount		brass					
Hanseman	AA 053	plaque	460.87	460.94	393.26	68.75	392.20
Madang	DOM 7004	brass	70.07	70.04	0.70	00.00	0.04
Airport	PSM7624	plaque	70.87	70.94	3.70	68.29	2.64
Wewak	GS 9388	brass	140.91	140.00	63.01	70.16	61.82
wewak	PSM	plaque brass	140.91	140.98	03.01	79.16	01.02
Wewak	3439	plaque	125.18	125.25	47.23	79.19	46.05
Vanimo	0400	brass	120.10	120.20	47.20	19.19	+0.03
Airport	PSM 71	plaque	80.59	80.66	3.43	78.49	2.17
Vanimo		brass	00.00	00.00	0.10	70.10	<u> </u>
Airport	VAN2000	plaque	83.31	83.38	6.11	78.53	4.85

PNG Acquisition of LiDAR and Imagery Derived Products Final Project Report

2.5 Map Projection

The survey data is presented in terms of WGS84 UTM zones 54/55 and PNGMG94 zones 54/55

2.6 Survey Control

The primary survey control points (GPS Base stations) were established at the airports of Nadzab, Madang, Vanimo and Wewak.

The central base stations were coordinated using AUSPOS (24 hour periods, multiple days) and checked against a number of surrounding State Survey Control Points.

All reference and check point surveys were coordinated relative to the nearest base station. All base station, reference points, and check points were coordinated against local survey marks.

Summary of the datum used throughout the project is below:

Horizontal:

The horizontal datum was established directly from AUSPOS for each base station. The Base stations accuracies were subsequently checked by control survey from established coordinated survey marks.

Vertical:

Ellipsoid - Established directly from AUSPOS as per the horizontal datum.

MSL - Each base station, reference point survey, and check point survey was linked to surrounding MSL marks, thereby providing them a "local " MSL datum in their immediate vicinity.

2.7 Data Tiling and File naming

Data is provided in tiles 1km by 1km to the following filenaming convention:

Intensity and RGB Imagery

	1	
ProjectName	PNGVanimoLidart	A meaningful description of the total survey area of interest. Do not use "_" as part of the Project Name
YYYY	2012	Year of survey
INT/RGB	-INT	Intensity image file identifier. Use RGB for 3 band natural colour imagery or RGBI for 4 band infrared
GSD	-002	Ground sampling distance or resolution of image in metres.
хххуууу	_4806558 (480,000mE) (6558,000mN)	Easting and northing value (whole kilometre) of the south- west corner of the tile. A single "_" must be used to separate the remaining file name components.
ZZ	_56	UTM zone of the file
wwww	0020	Width of the dataset or tile in whole kilometres
hhhh	0050	Height of dataset or tile in whole kilometres

Unclassified LiDAR

ProjectName	PNGVanimoLidar	A meaningful description of the total survey area of interest. Do not use "_" as part of the Project Name
YYYY	2012	Year of survey
UNC	-UNC	Unclassified point cloud. Fully calibrated and adjusted to specified datum
DAT	-ELL	Ellipsoidal heights (PNG94)
SWT	-1n	Swath number (1 file per swath)
хххуууу	_4806558 (480,000mE) (6558,000mN)	Easting and northing value (whole kilometre) of the south- west corner of the tile. A single "_" must be used to separate the remaining file name components.
ZZ	_56	UTM zone of the file
wwww	0002	Width of the tile in whole kilometres
hhhh	0002	Height of the tile in whole kilometres

Classified LiDAR

ProjectName	PNGVanimoLidar	A meaningful description of the total survey area of interest. Do not use "" as part of the Project
		Name
YYYY	2012	Year of survey
CL	-C2	classification level.
DAT	-ELL or MSL	Specified vertical datums. Ellipsoidal (ELL) or Orthometric (MSL)
хххуууу	_4806558 (480,000mE) (6558,000mN)	Easting and northing value (whole kilometre) of the south- west corner of the tile. A single "_" must be used to separate the remaining file name components.
ZZ	_56	UTM zone of the file
wwww	_0002	Width of the tile in whole kilometres
hhhh	0002	Height of the tile in whole kilometres

ESRI Grids

	o folder structure a information define	bove with UTM GRIDS stored in separate folders, with d.)
t = surface type.	e	Surface type • s – digital Surface model (DSM) • e – digital Elevation model (DEM) • f - canopy Foliage model (CFM) • c - Canopy elevation model (CHM) • h – Hydro digital elevation model (DEMH) • b – Bathymetry • m – Bathymetry and terrain elevations • t – Derived terrain variables (add as necessary)
хххуууу	6458595 (645,000mE) (8,595,000mN)	 Easting and northing value (whole kilometre) of the south- west corner of the tile.
55	01	Tile size (km) (square tile) • 01 – one kilometre • 02 – two kilometre • 05 - five kilometre • 10 – 10 kilometre • _5 (represents half a kilometre)
ррр	001	Ground sampling distance (GSD) or pixel size • 0_5 - half a metre • 001 – one metres • 002 – two metres etc

t = surface type.	e	Surface type • s – digital Surface model (DSM) • e – digital Elevation model (DEM) • f - canopy Foliage model (CFM) • c - Canopy elevation model (CHM) • h – Hydro digital elevation model (DEMH) • b – Bathymetry • m – Bathymetry and terrain elevations • t – Derived terrain variables (add as necessary)
XXXXXXX	vanimo	A meaningful description of the total survey area and or sensor, dataset version etc.
уу	12	Year of Survey
ррр	010	Ground sampling distance (GSD) or pixel size in metres (UTM) UTM 0_5 - half a metre 001 - one metres 002 - two metres etc

ProjectName	PNGVanimoLidar	A meaningful description of the total survey area of interest. Do not use "_" as part of the Project Name
YYYY	2012	Year of survey
SSSS-PPPP	-DEM-GRID	Surface type. DSM DEM HDEM CHM CFM Bathymetry (BAT) Mixed (MIX). Bathymetry and terrain elevations TTT (Other terrain variables e.g. slope (SLP). Add as necessary. Product type Mass points (MASS) Breaklines (BRK) TIN (TIN) GRID (GRID) Contours (CON) Cross Sections (CROSS) Imagery (BIL, TIF, IMG, ECW etc) Other Use additional field width and more characters if required.
GSD	-010	Ground sampling distance or resolution of product where appropriate. Where GSD is not required producers can extend the surface type and product description field.
хххуууу	_4806558 (480,000mE) (6558,000mN)	Easting and northing value (whole kilometre) of the south- west corner of the tile. A single "_" must be used to separate the remaining file name components.
22	_56	UTM zone of the file
wwww	_0020	Width of the dataset or tile in whole kilometres
hhhh	_0050	Height of dataset or tile in whole kilometres
ext		File extension according to format conventions LAS xyz ascii format for easting, northing, elevation, intensity asc – ESRI ascii GRID format shp dxf etc

ProjectName	PNGVanimoLidar	A meaningful description of the total survey area of interest. Do not use "_" as part of the Project Name
YYYY	2012	Year of survey
SSSS-PPPP	-DEM-CON	Surface type. DSM DEM HDEM CHM CFM Bathymetry (BAT) Mixed (MIX). Bathymetry and terrain elevations TTT (Other terrain variables e.g. slope (SLP). Add as necessary. Product type Mass points (MASS) Breaklines (BRK) TIN (TIN) GRID (GRID) Contours (CON) Cross Sections (CROSS) Imagery (BIL, TIF, IMG, ECW etc) Other Use additional field width and more characters if required.
GSD	20cm	Ground sampling distance or resolution of product where appropriate. Where GSD is not required producers can extend the surface type and product description field.
ххххууу	1185324 (118.5E, 32.4S)	Lower left <i>longitude and latitude</i> (to 1 decimal place) A single "_" must be used to separate the remaining file name components.
wwww	_0015 (1.5deg)	Width of the dataset or tile in whole degrees (including 1 decimal place)
hhhh	_0028 (2.8deg)	Height of dataset or tile in whole degrees (including 1 decimal place)
ext	shp	 File extension according to format conventions LAS xyz ascii format for easting, northing, elevation, intensity asc – ESRI ascii GRID format shp dxf etc

2.8 Primary LiDAR Point Cloud Data

The LAS files have been provided to ASPRS V1.2 Standards. LAS file point classifications levels are formatted to comply with ASPRS Standard LiDAR Point Classes.

- 1 Unclassified
- 2 Ground
- 3 Low Vegetation (<1m)
- 4 Medium Vegetation (>1m 2m)
- 5 High Vegetation (>2m)
- 6 Building
- 7 Low Point (noise)
- 8 Model Key-point (mass point)
- 9 Water
- 10 Reserved for ASPRS Definition

All returns and intensity has been retained. Overlap data has been retained. LAS files retain all relevant capture data including: point source ID and all flight path, sensor, GPS and processing system data. Refer to Section 2.7 data tiling and file naming for data tiling and file naming specifications.

2.9 Digital Elevation Model (DEM)

ArcGIS Terrains were created from ground classified LIDAR data. One metre ESRI ArcGIS binary grids were derived using a customised ArcGIS macro.

2.10 Digital Surface Model (DSM)

ArcGIS surfaces were created from non-ground classified LIDAR data. One metre ESRI ArcGIS binary grids were derived using a customised ArcGIS macro.

2.11 Canopy Elevation Model (CEM)

A canopy elevation model was produced as two metre ESRI ArcGIS binary grids using ArcGIS with the following methodology:

- All ground surface derived using natural neighbours interpolation [G] (Floating Point)
- First return vegetation surface derived using natural neighbours interpolation [V1] (Floating Point)
- Height in metres above ground of first vegetation returns [V1] [G] = [H] (Floating Point)
- Mask of all vegetation ALS returns with 1m buffer, reclassified to 0 outside mask and NoData inside [M] (Integer)
- Mosaic of canopy height surface and vegetation mask [H] + [M] = CEM (Floating Point)

2.12 Foliage Cover Model (FCM)

A foliage cover model was produced as 10 metre ESRI ArcGIS binary grids using ArcGIS with the following methodology:

- Count of all vegetation returns per 10m cell [V] (Integer)
- Count of total ALS returns per 10m cell [A] (Integer)
- Proportion of all vegetation to total ALS returns expressed as a percentage ([V] / [A]) * 100 = FCM (Floating Point)

2.13 Contours

Contours were generated in ESRI Shape file format with 0.5m and 5m intervals.

2.14 Imagery

Imagery has been generated in ECW and TIFF format to the capture extents. Please see details of camera specifications below:

DiMAC cameras bring high-quality imagery to a medium format

- Patented true Forward Motion Compensation technology provides crisp, blur-free imagery (fly lower, faster and longer)
- Temperature stabilization
- Rigorous geometric and radiometric calibration
- Wide choice of lenses
- 1-year comprehensive manufacturer's warranty with 24/7 support

ALTM Multi-Sensor Integration Package

- Custom-engineered multi-sensor mount
- Fully integrated lidar and photo mission planning capability
- Fully integrated sensor control and monitoring capability
- All required interconnect cables
- Full calibration report with lidar/camera boresight values
- Planning, operations, and data-processing training

Parameter	Specification
Camera Module (CM)	
Area sensor	60 MP full-frame CCD
	8,984 x 6,732 pixels (effective)
	6 µm x 6 µm pixels
	53.9 x 40.4 mm (effective)
True Forward Motion Compensation (FMC)	Solid-state electro-mechanical
Lenses	50 mm /70 mm /120 mm /210 mm
Shutter	Electro-mechanical iris mechanism
	1/125 to 1/500 sec., f-stops: 4, 5.6, 8, 11, 16
Filter	Standard size RGB and IRC interchangeable filters
Image output	8 or 16 bits per channel
	24-bit RGB: 180 MB
	48-bit RGB: 360 MB
Capture rate	2.5 sec.
Resolution (GSD)	2 cm to 1 m / <1 inch to 3.3 feet
IT Cube (ITC)	
Control & acquisition computers	PC/104 RoHS-compliant small form-factor embedded computers with minimum:
	Intel [®] Core™ Duo LV2400 CPU, 1-GB RAM
	4-GB flash disk local storage
	IEEE 1394 Firewire interface
Removable storage units	500-GB pressurized hard drives - 8,000 images typically
Dimensions (H x W x D)	250 x 250 x 250 mm / 10 x 10 x 10 in
Weight	15 kg / 33 lbs
Input voltage (DC)	24-28 V
Current draw	5 A
Software	
DIOPS	Real-time camera operations and configuration management
CaptureOne	Image development

2.15 Project Plan

Prior to data capture commencement, a Project Plan was submitted to and approved by Geoscience Australia. This Project Plan details work breakdown structure, agreed data capture plans, project milestones and delivery schedules, progress reporting schedules.

2.16 Pre-survey Quality Assurance Plan

Prior to the commencement of aerial LiDAR data capture, AAM prepared and submitted to Geoscience Australia a Quality Assurance Plan that conformed to an identified management system and generally complies with ISO 9001. The Plan addressed the organisation and management of the project, work procedures, environmental considerations, safety and risk control and test procedures.

The Plan also detailed the procedures to be used in verifying that the deliverables meet the required specification including:

 the procedures and methodologies to be used to verify that the deliverables meet the required specifications.

• Details of proposed calibration checks and methodology to be used to establish both reference stations and ground test sites.

2.17 Post-survey Spatial Accuracy Report

Following successful capture of the aerial data a Post Survey Spatial Accurracy report was submitted and approved by Geoscience Australia.

Observed flight runs were provided in ESRI shape file format.

All reference and check points used to verify accuracy were provided in ESRI shape file format.

For analysis of ground comparisons refer to Section 3.0. Accuracy Assessment.

2.18 GPS Base Station Data

GPS data for all occupations of base-stations has been supplied in RINEX format (Receiver Independent Exchange Format

3.0 Accuracy Assessment

Accuracy assessment was undertaken in two phases. Initially a post-survey reference site assessment was conducted to analyse the overall accuracy of the transformed lidar ground strikes relative to MSL. Additional check points were then collected to independently assess the accuracy of the classified data according to different land cover types. In total 2104 field survey points were collected across the lidar capture area.

The independent ground survey was not undertaken in an appropriate method to allow for classification accuracy assessment of landcover classes in the form of an error matrix. The survey did however, allow for a detailed assessment of vertical accuracy across different land cover classes. ID photos were only collected for each survey site and not individual points.

3.1 Project Design Accuracy

Project specifications and technical processes were designed to achieve data accuracies as follows:

Project Design Accuracy				
	Measured Point	Derived Point	Basis of Estimation	
Vertical data		0.15m	Project Design	
Horizontal data	< 0.13m		System specifications	
Test points	0.05m		Survey methodology used	

Notes On Expected Accuracy

- Values shown represent standard error (68% confidence level or 1 sigma), in metres.
- "Derived points" are those interpolated from a terrain model.
- "Measured points" are those observed directly.
- Accuracy estimates for terrain modeling refer to the terrain definition on clear ground. Ground definition in vegetated terrain may contain localized areas with systematic errors or outliers which fall outside this accuracy estimate.
- Laser strikes have been classified into "ground" and "non-ground", based upon algorithms tailored for major terrain/vegetation combinations existing in the project area. The definition of the ground may be less accurate in isolated pockets of dissimilar terrain/vegetation combinations.

3.2 Reference Site Analysis

Test points were distributed in 17 groups across the four town sites area and located on open clear ground. Comparison of the field test points with elevations interpolated from measured data are summarised in the table below.

Reference Point Site Vertical Accuracy – LiDAR Data					
Reference	Mean Difference	Std Deviation	RMS		
Point Site	(m)	(m)	(m)		
VNMVP1	0.007	0.017	0.019		
VNMVP2	0.049	0.044	0.065		
VNMVP3	-0.04	0.018	0.044		
WWKVP1	-0.006	0.017	0.018		
WWKVP2	0.038	0.045	0.058		
WWKVP3	0.033	0.045	0.056		
WWKVP4	-0.047	0.012	0.049		
MDGVP1	-0.03	0.041	0.051		
MDGVP2	0.017	0.015	0.023		
MDGVP3	0.03	0.017	0.034		
MDGVP4	-0.02	0.067	0.07		
LAEVP1	-0.027	0.017	0.032		
LAEVP2	-0.001	0.03	0.03		
LAEVP3	0.007	0.009	0.012		
LAEVP4	0.036	0.01	0.037		
LAEVP5	0.038	0.013	0.04		
LAEVP6	-0.022	0.028	0.035		

3.3 Check Point Analysis

For the purposes of independent accuracy assessment check point measurements were taken throughout the project area. Check points were collected for each land cover type across the project extent. The Table below shows the number of check points for each class.

Area	Landcover Class	No. of Points
	Dense Vegetation	32
	Grass	14
	Grass 0.6m	10
	Medium Timber	22
Lae	Medium Vegetation	16
	Scrub Garden	9
	Short Grass	13
	Tall Grass	15
	Dense Trees	11
Madang	Grass	21
	Grass 1.5m	10
	Dense Vegetation	10
Vanimo	Grass	12
	Low Scrub	12
	Dense Vegetation	20
	Grass	24
Wewak	Grass 0.6m	12
	Medium Timber	10
	Medium Vegetation	31

Comparison of the field check points with elevations interpolated from the LiDAR and DEM data resulted in the accuracies shown in the following tables for the landcover classes:

	Vertical Accuracy – LiDAR Data					
Area	Landcover	No. of	Mean	Std Deviation	RMS	
	Class	Points	Difference (m)	(m)	(m)	
	Dense Vegetation	32	-0.015	0.046	0.048	
Lae	Grass	14	+0.041	0.013	0.043	
	Grass 0.6m	10	+0.270	0.121	0.293	
	Medium Timber	22	+0.048	0.088	0.099	
	Medium Vegetation	16	-0.031	0.026	0.040	
	Scrub Garden	9	+0.019	0.058	0.057	
	Short Grass	13	+0.075	0.014	0.077	
	Tall Grass	15	+0.431	0.254	0.496	
Madang	Dense Trees	11	+0.009	0.045	0.044	
	Grass	21	+0.040	0.055	0.067	
	Grass 1.5m	10	+0.194	0.042	0.198	
	Dense Vegetation	10	+0.133	0.100	0.164	
Vanimo	Grass	12	+0.047	0.011	0.048	
	Low Scrub	12	+0.048	0.067	0.080	
	Dense Vegetation	20	+0.211	0.218	0.300	
	Grass	24	+0.000	0.038	0.037	
Wewak	Grass 0.6m	12	+0.083	0.014	0.084	
	Medium Timber	10	+0.054	0.074	0.088	
	Medium Vegetation	31	-0.026	0.072	0.075	

Vertical A	Vertical Accuracy Comparison with Data Specification – LiDAR Data					
Area	Landcover Class	Within ±0.30m	Outside ±0.30m	Total	% Within ±0.30m	% Outside ±0.30m
	Dense Vegetation	32	0	32	100.0	0.0
	Grass	14	0	14	100.0	0.0
	Grass 0.6m	8	2	10	80.0	20.0
Lae	Medium Timber	21	1	22	95.5	4.5
	Medium Vegetation	16	0	16	100.0	0.0
	Scrub Garden	9	0	9	90.0	0.0
	Short Grass	13	0	13	100.0	0.0
	Tall Grass	6	9	15	40.0	60.0
Madang	Dense Trees	11	0	11	100.0	0.0
	Grass	21	0	21	100.0	0.0
	Grass 1.5m	10	0	10	100.0	0.0
Vanimo	Dense Vegetation	10	0	10	100.0	0.0
	Grass	12	0	12	100.0	0.0
	Low Scrub	12	0	12	100.0	0.0
Wewak	Dense Vegetation	14	6	20	70.0	30.0
	Grass	24	0	24	100.0	0.0
	Grass 0.6m	12	0	12	100.0	0.0
	Medium Timber	10	0	10	100.0	0.0
	Medium Vegetation	31	0	31	100.0	0.0

4.0 Metadata

A complete metadata statement consistent with the current ANZLIC standard has been provided for each data product supplied. Metadata documents have been provided in Adobe Reader (.pdf) format. Further for every file in each data product, an .xml document with a complete metadata statement consistent with the current ANZLIC standard has been provided.

4.1 General Capture Specifications

MetaData Elements	
Characteristic	Description
Device Name	Optech ALTM Orion M200
IMU Used	SAGEM FMU
Acquisition Start Date	05/05/2012
Acquisition End Date	13/07/2012
Number of Runs	191 (Town Sites)
Number of Cross Runs	11 (Town Sites)
Flight Direction	Variable
Flying Height (AGL)	700m
Half Scan Angle	20
Swath Width	509m
Sidelap	20%
Average Point Spacing	0.43
Laser Pulse Rate	150KHZ
Laser Pulse Mode	Single
Laser return Types	1 st , 2 nd , 3 rd and Last
Laser Intensity	Supplied on all returns
Laser footprint size	0.14m
DEM output pixel size	1m
DSM output pixel size	1m
CHM output pixel size	2m
FCM output pixel size	10m
Horizontal Datum	WGS84 and PNG94
Vertical Datum	WGS84 MSL (EGM08), PNG94 Ellipsoid and MSL (PNG08)
Map Projection	UTM zones 54 & 55 and PNGMG zones 54 & 55
System Calibration Certification	20 th June 2012

4.2 Source Data

Source Data				
Item	Source	Description	Ref No	Date
Laser System	AAM	ALTM-Orion	19647A	05/12-07/12
GPS Base Data	AAM	Static GPS	19647A	05/12-07/12
Base Stn Coords	Quickclose	Total Station	19647A	05/12-07/12
Field Survey Data	Quickclose	RTK & Total Station	19647A	23/07/2012

4.3 Reference Systems

	Horizontal	Vertical
Datum	WGS84	MSL
Projection	UTM Zone 54 & 55	N/A
Geoid Model	N/A	EGM2008
		_0000
Base Station 1	Nadzab Airport (z55)	Nadzab Airport
Dase Station 1	470161.94E	74.08 RL
	9274234.41N	74.00 ML
	9274234.41N	
Deep Chatien 0	Madana Aimant (755)	Madava Aireart
Base Station 2	Madang Airport (z55)	Madang Airport
	365385.85E	4.43 RL
	9423896.92N	
Base Station 3	Madang Airport 2 (z55)	Madang Airport 2
	365530.88E	4.54 RL
	9423971.95N	
Base Station 4	Vanimo Airport (z54)	Vanimo Airport
	533268.96E	4.52 RL
	9702924.93N	
Base Station 5	Wewak Airport (z54)	Wewak Airport
	796402.27E	1.96 RL
	9603839.19N	1.00 112
	3003033.13N	
	Horizontal	Vertical
Datum	PNGMG94	MSL
Projection	PNMG Zone 54 & 55	N/A
Geoid Model	N/A	PNG08
	N/A	111000
Base Station 1	Nadzab Airport (z55)	Nadzab Airport
Dase Station 1	470161.54E	73.15 RL
		73.15 RL
	9274233.51N	
Base Station 2	Madang Airport (z55)	
		Madang Airport
	365385.45E	3.38 RL
	365385.45E 9423896.02N	3.38 RL
Base Station 3	365385.45E 9423896.02N Madang Airport 2 (z55)	3.38 RL Madang Airport 2
Base Station 3	365385.45E 9423896.02N Madang Airport 2 (z55) 365530.48E	3.38 RL
Base Station 3	365385.45E 9423896.02N Madang Airport 2 (z55)	3.38 RL Madang Airport 2
Base Station 3	365385.45E 9423896.02N Madang Airport 2 (z55) 365530.48E	3.38 RL Madang Airport 2
Base Station 3 Base Station 4	365385.45E 9423896.02N Madang Airport 2 (z55) 365530.48E 9423971.05N	3.38 RL Madang Airport 2 3.49 RL
	365385.45E 9423896.02N Madang Airport 2 (z55) 365530.48E	3.38 RL Madang Airport 2
	365385.45E 9423896.02N Madang Airport 2 (z55) 365530.48E 9423971.05N Vanimo Airport (z54) 533268.56E	3.38 RL Madang Airport 2 3.49 RL Vanimo Airport
	365385.45E 9423896.02N Madang Airport 2 (z55) 365530.48E 9423971.05N Vanimo Airport (z54)	3.38 RL Madang Airport 2 3.49 RL Vanimo Airport
Base Station 4	365385.45E 9423896.02N Madang Airport 2 (z55) 365530.48E 9423971.05N Vanimo Airport (z54) 533268.56E 9702924.03N	3.38 RL Madang Airport 2 3.49 RL Vanimo Airport 3.25 RL
	365385.45E 9423896.02N Madang Airport 2 (z55) 365530.48E 9423971.05N Vanimo Airport (z54) 533268.56E 9702924.03N Wewak Airport (z54)	3.38 RL Madang Airport 2 3.49 RL Vanimo Airport 3.25 RL Wewak Airport
Base Station 4	365385.45E 9423896.02N Madang Airport 2 (z55) 365530.48E 9423971.05N Vanimo Airport (z54) 533268.56E 9702924.03N	3.38 RL Madang Airport 2 3.49 RL Vanimo Airport 3.25 RL

PNG Acquisition of LiDAR and Imagery Derived Products Final Project Report

4.4 Limitations of Data

The definition of the ground under trees and over wetland areas may be less accurate.

5.0 Extraordinary Issues

There have been no extraordinary issues associated with this project.

6.0 Other Project Information of Note

6.1 ANZLIC Metadata Statement

To be generated from NEDF/ANZLIC metadata tool