23 results
 Pacific Data Hub

Increasing atmospheric CO2 can decrease the seawater pH and carbonate ions, which may adversely affect the larval survival of calcareous animals. In this study, we simulated future atmospheric CO2 concentrations (800, 1500, 2000 and 3000 $μ$atm) and examined the effects of ocean acidification on the embryonic and larval stage of an infaunal clam Paphia undulate. Significant decrease of hatching of P.

 Pacific Data Hub

Ocean acidification is expected to negatively impact many calcifying marine organisms by impairing their ability to build their protective shells and skeletons, and by causing dissolution and erosion. Here we investigated the large predatory “triton shell” gastropod Charonia lampas in acidified conditions near CO2 seeps off Shikine-jima (Japan) and compared them with individuals from an adjacent bay with seawater pH at present-day levels (outside the influence of the CO2 seep).

 Pacific Data Hub

Echinoid sea urchins with distributions along the continental shelf and slope of the eastern Pacific often dominate the megafauna community. This occurs despite their exposure to naturally low dissolved oxygen (DO) waters (\textless60 $μ$mol kg−1) associated with the Oxygen Limited Zone and low-pH waters undersaturated with respect to calcium carbonate ($Ømega$CaCO3 \textless 1).

 Pacific Data Hub

In order to help predict the effects of anthropogenic stressors on shallow water carbonate environments, it is important to focus research on regions containing natural oceanographic gradients, particularly with respect to interactions between oceanography and ecologically sensitive carbonate producers. The Galápagos Archipelago, an island chain in the eastern equatorial Pacific, spans a natural nutrient, pH, and temperature gradient due to the interaction of several major ocean currents.

 Pacific Data Hub

Elevated pCO2 threatens coral reefs through impaired calcification. However, the extent to which elevated pCO2 affects the distribution of the pelagic larvae of scleractinian corals, and how this may be interpreted in the context of ocean acidification (OA), remains unknown. We tested the hypothesis that elevated pCO2 affects one aspect of the behavior (i.e., motility) of brooded larvae from Pocillopora damicornis in Okinawa (Japan), and used UV-transparent tubes that were 68-cm long (45 mm ID) to incubate larvae on a shallow fringing reef.

 Pacific Data Hub

There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on the bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, southern China.

 Pacific Data Hub

Rising anthropogenic CO2 in the atmosphere is accompanied by an increase in oceanic CO2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants, most notably those that precipitate calcium carbonate skeletons, such as reef-building corals. Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA.

 Pacific Data Hub

In an ocean with rapidly changing chemistry, studies have assessed coral skeletal health under projected ocean acidification (OA) scenarios by characterizing morphological distortions in skeletal architecture and measuring bulk properties, such as net calcification and dissolution. Few studies offer more detailed information on skeletal mineralogy. Since aragonite crystallography will at least partially govern the material properties of coral skeletons, such as solubility and strength, it is important to understand how it is influenced by environmental stressors.

 Pacific Data Hub

We conducted a series of experiments to examine short-term (2-5 days) effects of abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater on rates of primary and bacterial production at Station ALOHA (22°45' N, 158° W) in the North Pacific Subtropical Gyre (NPSG). The majority of experiments (8 of 10 total) displayed no response in rates of primary production (measured by 14C-bicarbonate assimilation; 14C-PP) under elevated pCO2 (̃1100 $μ$atm) compared to ambient pCO2 (\̃387 $μ$atm).

 Pacific Data Hub

Kelp forests are among the world's most productive marine ecosystems, yet little is known about their biogeochemistry. This study presents a 14-month time series (July 2013–August 2014) of surface and benthic dissolved inorganic carbon and total alkalinity measurements, along with accompanying hydrographic measurements, from six locations within a central California kelp forest. We present ranges and patterns of variability in carbonate chemistry, including pH (7.70–8.33), pCO2 (172–952 µatm), and the aragonite saturation state, $Ømega$Ar (0.94–3.91).

 Pacific Data Hub

The pteropod Limacina helicina frequently experiences seasonal exposure to corrosive conditions ($Ømega$ar  \textless 1) along the US West Coast and is recognized as one of the species most susceptible to ocean acidification (OA). Yet, little is known about their capacity to acclimatize to such conditions. We collected pteropods in the California Current Ecosystem (CCE) that differed in the severity of exposure to $Ømega$ar conditions in the natural environment.

 Pacific Data Hub

The ocean is a substantial sink for atmospheric carbon dioxide (CO2) released as a result of human activities. Over the coming decades the dissolved inorganic C concentration in the surface ocean is predicted to increase, which is expected to have a direct influence on the efficiency of C utilization (consumption and production) by phytoplankton during photosynthesis. Here, we evaluated the generality of C‐rich organic matter production by examining the elemental C:N ratio of organic matter produced under conditions of varying pCO2.

 Pacific Data Hub

As the ocean undergoes acidification, marine organisms will become increasingly exposed to reduced pH, yet variability in many coastal settings complicates our ability to accurately estimate pH exposure for those organisms that are difficult to track. Here we present larval shell-based geochemical proxies that reflect pH exposure from laboratory and field settings in larvae of the mussels Mytilus californianus and M. galloprovincialis. Laboratory-based proxies were generated from shells precipitated at pH 7.51 to 8.04.

 Pacific Data Hub

The unusual rate and extent of environmental changes due to human activities may exceed the capacity of marine organisms to deal with this phenomenon. The identification of physiological systems that set the tolerance limits and their potential for phenotypic buffering in the most vulnerable ontogenetic stages become increasingly important to make large-scale projections. Here, we demonstrate that the differential sensitivity of non-calcifying Ambulacraria (echinoderms and hemichordates) larvae towards simulated ocean acidification is dictated by the physiology of their digestive systems.

 Pacific Data Hub

Acidification of seawater owing to oceanic uptake of atmospheric CO2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (n=3) incubated in continuous-flow mesocosms subject to future seawater conditions.

 Pacific Data Hub

We tested the sensitivity of the vertical distributions and shell dissolution patterns of thecosome pteropods to spatial gradients associated with an eddy-associated front in the southern California Current System. The aragonite saturation horizon ($Ømega$arag = 1.0) shoaled from \textgreater200 to \textless75 m depth across the front. The vertical distribution of thecosome pteropods tracked these changes, with all 5 species showing reduced occurrence at depths below 100 m where waters were less saturated with respect to aragonite.

 Pacific Data Hub

The influence of ocean acidification in deep-sea ecosystems is poorly understood, but is expected to be large owing to the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea Free Ocean CO2 Enrichment (dp-FOCE) system1 to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed.

 Pacific Data Hub

Increasing CO2 in seawater (i.e. ocean acidification) may have various and potentially adverse effects on phytoplankton dynamics and hence the organic carbon dynamics. We conducted a CO2 manipulation experiment in the Sea of Okhotsk in summer 2006 to investigate the response of the organic carbon dynamics.

 Pacific Data Hub

Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA).

 Pacific Data Hub

By the end of this century, anthropogenic carbon dioxide (CO2) emissions are expected to decrease the surface ocean pH by as much as 0.3 unit. At the same time, the ocean is expected to warm with an associated expansion of the oxygen minimum layer (OML). Thus, there is a growing demand to understand the response of the marine biota to these global changes. We show that ocean acidification will substantially depress metabolic rates (31%) and activity levels (45%) in the jumbo squid, Dosidicus gigas, a top predator in the Eastern Pacific. This effect is exacerbated by high temperature.