5 results
 Pacific Data Hub

Variation in rates of herbivory may be driven by direct effects of the abiotic environment on grazers, as well as indirect effects mediated by their food. Disentangling these direct and indirect effects is of fundamental importance for ecological forecasts of changing climate on species interactions and their influence on biogenic habitat. Whilst elevated atmospheric CO2 may have direct effects on grazers with calcareous structures via ‘ocean acidification', it may also have indirect effects via changes caused to their food.

 Pacific Data Hub

The ecological effects of ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) on benthic marine communities are largely unknown. We investigated in situ the consequences of long-term exposure to high CO2 on coral-reef-associated macroinvertebrate communities around three shallow volcanic CO2 seeps in Papua New Guinea. The densities of many groups and the number of taxa (classes and phyla) of macroinvertebrates were significantly reduced at elevated CO2 (425–1100 µatm) compared with control sites.

 Pacific Data Hub

There is growing concern that global environmental change might exacerbate the ecological impacts of invasive species by increasing their per capita effects on native species. However, the mechanisms underlying such shifts in interaction strength are poorly understood. Here, we test whether ocean acidification, driven by elevated seawater pCO2, increases the susceptibility of native Olympia oysters to predation by invasive snails. Oysters raised under elevated pCO2 experienced a 20% increase in drilling predation.

 Pacific Data Hub

It has been suggested that climate change may promote the outbreaks of diseases in the sea through altering the host susceptibility, the pathogen virulence, and the host-pathogen interaction. However, the impacts of ocean acidification (OA) on the pathogen components of bacterial community and the host-pathogen interaction of marine bivalves are still poorly understood.

 Pacific Data Hub

Rising atmospheric CO2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO2 seeps in Papua New Guinea.