9 results
 Pacific Data Hub

Hemocytes play important roles in the innate immune response and biomineralization of bivalve mollusks. However, the hemocytes in pearl oysters are poorly understood. In the present study, we investigated the morphology and classification of hemocytes in the pearl oyster, P. fucata. Three types of hemocytes were successfully obtained by light microscopy, electron microscopy and flow cytometry methods: small hyalinocytes, large hyalinocytes and granulocytes. The small hyalinocytes are the major hemocyte population.

 Pacific Data Hub

We present experimental data obtained from an experiment with newly hatched veliger larvae of the gastropod Concholepas concholepas exposed to three pCO2 levels. Egg capsules were collected from two locations in northern and central Chile, and then incubated throughout their entire intra-capsular life cycle at three nominal pCO2 levels, ∼400, 700 and 1000 ppm (i.e. corresponding to ∼8.0, 7.8 and 7.6 pH units, respectively). Hatched larvae were fed with natural food assemblages. Food availability at time zero did not vary significantly with pCO2 level.

 Pacific Data Hub

The CO2-boosted trophic transfer from primary producers to herbivores has been increasingly discovered at natural CO2 vents and in laboratory experiments. Despite the emerging knowledge of this boosting effect, we do not know the extent to which it may be enhanced or dampened by ocean warming. We investigated whether ocean acidification and warming enhance the nutritional quality (C:N ratio) and energy content of turf algae, which is speculated to drive higher feeding rate, greater energy budget and eventually faster growth of herbivores.

 Pacific Data Hub

Hypoxia and ocean acidification are two consequences of anthropogenic activities. These global trends occur on top of natural variability. In environments such as estuarine areas, short-term acute pH and O2 fluctuations are occurring simultaneously. The present study tested the combined effects of short-term seawater acidification and hypoxia on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were exposed for 72 h to six combined treatments with three pH levels (8.1, 7.7 and 7.3) and two dissolved oxygen (DO) levels (2 mg L−1, 6 mg L−1).

 Pacific Data Hub

There is growing concern that global environmental change might exacerbate the ecological impacts of invasive species by increasing their per capita effects on native species. However, the mechanisms underlying such shifts in interaction strength are poorly understood. Here, we test whether ocean acidification, driven by elevated seawater pCO2, increases the susceptibility of native Olympia oysters to predation by invasive snails. Oysters raised under elevated pCO2 experienced a 20% increase in drilling predation.

 Pacific Data Hub

It has been suggested that climate change may promote the outbreaks of diseases in the sea through altering the host susceptibility, the pathogen virulence, and the host-pathogen interaction. However, the impacts of ocean acidification (OA) on the pathogen components of bacterial community and the host-pathogen interaction of marine bivalves are still poorly understood.

 Pacific Data Hub

Biomaterials connect organisms to their environments. Their function depends on biological, chemical and environmental factors, both at the time of creation and throughout the life of the material. Shifts in the chemistry of the oceans driven by anthropogenic CO2 (termed ocean acidification) have profound implications for the function of critical materials formed under these altered conditions.

 Pacific Data Hub

Fossil fuel emissions are changing global temperature and ocean water chemistry. These changes are already altering the seasonal upwelling events that bring deeper ocean water with lower temperature, dissolved oxygen, and pH to shallower areas of the California Current Large Marine Ecosystem. For example, increase absorption of CO2 by the ocean is expected to lower the pH of current upwelling events (observed to be ̃7.5) by a further 0.4 pH units. These changes in seawater chemistry are expected to affect reproduction, growth, and survival for many coastal marine invertebrates.

 Pacific Data Hub

By the end of this century, anthropogenic carbon dioxide (CO2) emissions are expected to decrease the surface ocean pH by as much as 0.3 unit. At the same time, the ocean is expected to warm with an associated expansion of the oxygen minimum layer (OML). Thus, there is a growing demand to understand the response of the marine biota to these global changes. We show that ocean acidification will substantially depress metabolic rates (31%) and activity levels (45%) in the jumbo squid, Dosidicus gigas, a top predator in the Eastern Pacific. This effect is exacerbated by high temperature.