4 results
 Pacific Data Hub

Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of the major reef framework builders. In addition, acidification is likely to affect the important relationship between corals and their symbiotic dinoflagellates, and on the productivity of this association. However, little is known about how acidification impacts on the physiology of key reef builders and how acidification interacts with warming.

 Pacific Data Hub

Increasing seawater temperatures and CO2 levels associated with climate change affect the shallow marine ecosystem function. In this study, the effects of elevated seawater temperature and partial pressure of CO2 (pCO2) on subtropical sediment systems of mangrove, seagrass, and coral reef lagoon habitats of Okinawa, Japan, were examined.

 Pacific Data Hub

Oceanic uptake of anthropogenic carbon dioxide results in a decrease in seawater pH, a process known as “ocean acidification”. The pearl oyster Pinctada fucata, the noble scallop Chlamys nobilis, and the green-lipped mussel Perna viridis are species of economic and ecological importance along the southern coast of China. We evaluated the effects of seawater acidification on clearance, respiration, and excretion rates in these three species. The ammals were reared in seawater at pH 8.1 (control), 7.7, or 7.4. The clearance rate was highest at pH 7.7 for P. fucata and at pH 8.1 for C.

 Pacific Data Hub

Hizikia fusiforme (Harv.) Okamura (brown seaweed) was cultured using aeration with two CO2 conditions: outdoor air (actual atmospheric CO2 concentration, averaging 360 $μ$l l-1) and CO2-enriched air (averaging 700 $μ$l l-1), to investigate the possible adjustments of elevated atmospheric CO2 to the growth, photosynthesis and nitrogen metabolism in this mariculture species. Aeration with CO2-enriched air reduced the pH in the culture medium in comparison with aeration with air. The mean relative growth rate was enhanced when H. fusiforme was grown at high CO2 with respect to normal CO2.