62 results
 Pacific Data Hub

This modeling study investigates the impacts of increasing atmospheric CO2 concentration on acidification in the East Sea. A historical simulation for the past three decades (1980 to 2010) was performed using the Hadley Centre Global Environmental Model (version 2), a coupled climate model with atmospheric, terrestrial and ocean cycles. As the atmospheric CO2 concentration increased, acidification progressed in the surface waters of the marginal sea. The acidification was similar in magnitude to observations and models of acidification in the global ocean.

 Pacific Data Hub

Ocean acidification (OA) is likely to have an effect on the fertilizing potential of desert dust in high-nutrient, low-chlorophyll oceanic regions, either by modifying iron (Fe) speciation and bioavailability or by altering phytoplankton Fe requirements and acquisition. To address this issue, short incubations (4 days) of northeast subarctic Pacific waters enriched with either FeSO4 or dust and set at pH 8.0 (in situ) and 7.8 were conducted in August 2010.

 Pacific Data Hub

This article describes a potentiometric ocean acidification simulation system which automatically regulates pH through the injection of 100% CO2 gas into temperature-controlled seawater. The system is ideally suited to long-term experimental studies of the effect of acidification on biological processes involving small-bodied (10–20 mm) calcifying or non-calcifying organisms. Using hobbyist-grade equipment, the system was constructed for approximately USD 1200 per treatment unit (tank, pH regulation apparatus, chiller, pump/filter unit).

 Pacific Data Hub

Eastern boundary upwelling systems (EBUS) are naturally more acidic than most of the rest of the surface ocean. Observations of EBUS already show pH values and saturation states with regard to the carbonate mineral aragonite that are as low as those expected for most open ocean waters several decades from now. Thus, as atmospheric CO2 increases further, EBUS are prone to widespread and persistent undersaturation with regard to aragonite, making them especially sensitive to ocean acidification.

 Pacific Data Hub

There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on the bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, southern China.

 Pacific Data Hub

Rising anthropogenic CO2 in the atmosphere is accompanied by an increase in oceanic CO2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants, most notably those that precipitate calcium carbonate skeletons, such as reef-building corals. Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA.

 Pacific Data Hub

Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (NCP) and calcification (NCC). Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia) contribute to changes in the seawater aragonite saturation state ($Ømega$a).

 Pacific Data Hub

Shoaling of the saturation horizon for aragonite in the California Current System has been well-documented; however, these reports are based primarily on surveys conducted in waters off the continental shelf. Here we characterize, for the first time, regional spatial and seasonal patterns in aragonite saturation state ($Ømega$arag) in the shallow, nearshore waters of the southern California continental shelf through a series of synoptic surveys. Spectrophotometric pH and total alkalinity samples were collected quarterly from 72 sites along the shelf for two years.

 Pacific Data Hub

Increasing global concentrations of atmospheric CO2 are predicted to decrease ocean pH, with potentially severe impacts on marine food webs, but empirical data documenting ocean pH over time are limited. In a high-resolution dataset spanning 8 years, pH at a north-temperate coastal site declined with increasing atmospheric CO2 levels and varied substantially in response to biological processes and physical conditions that fluctuate over multiple time scales.

 Pacific Data Hub

The boron isotopic ($δ$11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner- and mid-shelf sites exhibit the same overall decrease in $δ$11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a decline in seawater pH (pHsw) of ̃0.017 ± 0.007 pH units per decade.

 Pacific Data Hub

The Chilean Patagonia constitutes one of the most important and extensive fjord systems worldwide, therefore can be used as a natural laboratory to elucidate the pathway of both organic and inorganic matter in the receiving environment. In this study we use data collected during an intensive oceanographic cruise along the Magellan Strait into the Almirantazgo Fjord in southern Patagonia to evaluate how different sources of dissolved inorganic carbon (DIC) and recycling may impact particulate organic carbon (POC) $δ$13C and influence the nutrients and carbonate system spatial distribution.

 Pacific Data Hub

Kelp forests are among the world's most productive marine ecosystems, yet little is known about their biogeochemistry. This study presents a 14-month time series (July 2013–August 2014) of surface and benthic dissolved inorganic carbon and total alkalinity measurements, along with accompanying hydrographic measurements, from six locations within a central California kelp forest. We present ranges and patterns of variability in carbonate chemistry, including pH (7.70–8.33), pCO2 (172–952 µatm), and the aragonite saturation state, $Ømega$Ar (0.94–3.91).

 Pacific Data Hub

Understanding larval bivalve responses to variable regimes of seawater carbonate chemistry requires realistic quantification of physiological stress. Based on a degree-day modeling approach, we developed a new metric, the ocean acidification stress index for shellfish (OASIS), for this purpose. OASIS integrates over the entire larval period the instantaneous stress associated with deviations from published sensitivity thresholds to aragonite saturation state ($Ømega$Ar) while experiencing variable carbonate chemistry.

 Pacific Data Hub

The pteropod Limacina helicina frequently experiences seasonal exposure to corrosive conditions ($Ømega$ar  \textless 1) along the US West Coast and is recognized as one of the species most susceptible to ocean acidification (OA). Yet, little is known about their capacity to acclimatize to such conditions. We collected pteropods in the California Current Ecosystem (CCE) that differed in the severity of exposure to $Ømega$ar conditions in the natural environment.

 Pacific Data Hub

As the ocean undergoes acidification, marine organisms will become increasingly exposed to reduced pH, yet variability in many coastal settings complicates our ability to accurately estimate pH exposure for those organisms that are difficult to track. Here we present larval shell-based geochemical proxies that reflect pH exposure from laboratory and field settings in larvae of the mussels Mytilus californianus and M. galloprovincialis. Laboratory-based proxies were generated from shells precipitated at pH 7.51 to 8.04.

 Pacific Data Hub

We show that, statistically, the simple linear regression (SLR)-determined rate of temporal change in seawater pH ($β$pH), the so-called acidification rate, can be expressed as a linear combination of a constant (the estimated rate of temporal change in pH) and SLR-determined rates of temporal changes in other variables (deviation largely due to various sampling distributions), despite complications due to different observation durations and temporal sampling distributions.

 Pacific Data Hub

Freshwater discharge affects the biogeochemistry of river-influenced nearshore environments by contributing with carbon and nutrients. An increase in human activities in river basins may alter the natural riverine nutrients and carbon export to coastal ecosystems. Along a wide latitudinal range (32°55′S–40°10′S), this study explores the role of climate and land use in determining the nutrient and carbon concentrations in the river mouth and fluxes to adjacent coastal areas.

 Pacific Data Hub

We present results of the CO2/carbonate system from the BIOSOPE cruise in the Eastern South Pacific Ocean, in an area not sampled previously. In particular, we present estimates of the anthropogenic carbon (C\textgreaterTrOCAant) distribution in the upper 1000 m of this region using the TrOCA method. The highest concentrations of CTrOCAant found around 13° S, 132° W and 32° S, 91° W, are higher than 80 $μ$mol.kg−1 and 70 $μ$mol.kg−1, respectively.

 Pacific Data Hub

Although there is a substantial body of work on how temperature shapes coastal marine ecosystems, the spatiotemporal variability of seawater pH and corresponding in situ biological responses remain largely unknown across biogeographic ranges of tropical coral species. Environmental variability is important to characterize because it can amplify or dampen the biological consequences of global change, depending on the functional relationship between mean temperature or pH and organismal traits.

 Pacific Data Hub

1.Seaweeds are able to modify the chemical environment at their surface, in a micro‐zone called the diffusive boundary layer (DBL), via their metabolic processes controlled by light intensity. Depending on the thickness of the DBL, sessile invertebrates such as calcifying bryozoans or tube‐forming polychaetes living on the surface of the blades can be affected by the chemical variations occurring in this microlayer.