6 results
 Pacific Data Hub

We test for trace element proxies in the high-magnesium calcite fraction of bamboo coral internodes by comparing environmental conditions and growth rates to the specimen-mean compositions of 73 corals that were live-caught at depths ranging from 3 to 3950 m and collected from habitats ranging from tropical coral reefs to the Antarctic slope.Comparisons were done at a large geographic scale (LGS) and for a well sampled area south of Australia, across depths at a single site, in order to help separate the effects of environmental variables that co-vary at one spatial scale, but not the other

 Pacific Data Hub

With respect to their sensitivity to ocean acidification, calcifiers such as the coccolithophore Emiliania huxleyi have received special attention, as the process of calcification seems to be particularly sensitive to changes in the marine carbonate system. For E. huxleyi, apparently conflicting results regarding its sensitivity to ocean acidification have been published (Iglesias-Rodriguez et al., 2008a; Riebesell et al., 2000). As possible causes for discrepancies, intra-specific variability and different effects of CO2 manipulation methods, i.e.

 Pacific Data Hub

Skeletal growth records in annually banded massive coral skeletons are an under-exploited archive of coral responses to environmental changes. Average linear extension and calcification rates in Indo-Pacific Porites are linearly related to average water temperatures through 23 to 30¯C. Assessing long-term trends in Porites extension and density requires caution as there is evidence of an age effect whereby in earlier growth years corals will tend to extend less and form a higher density skeleton than in later years. This does not appear to affect calcification rates.

 Pacific Data Hub

Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e.

 Pacific Data Hub

The cheilostome bryozoan Melicerita chathamensis from the continental shelf around southern New Zealand is unusual in having macroscopic annual growth checks. It thus presents an opportunity to examine annual variations in age, growth, calcification and carbonate mineralogy in a temperate bryozoan. Forty-one colonies dredged south of Snares Islands, New Zealand (47° 49.537′S, 166° 45.910′E, 166 m water depth, 2 February 2008) ranged from 2 to 9 years old and were up to 40 mm long.

 Pacific Data Hub

Ocean acidification driven by rising levels of CO2 impairs calcification, threatening coral reef growth. Predicting how corals respond to CO2 requires a better understanding of how calcification is controlled. Here we show how spatial variations in the pH of the internal calcifying fluid (pHcf) in coral (Stylophora pistillata) colonies correlates with differential sensitivity of calcification to acidification. Coral apexes had the highest pHcf and experienced the smallest changes in pHcf in response to acidification.