4 results
 Pacific Data Hub

Ocean acidification and warming are predicted to affect the ability of marine bivalves to build their shells, but little is known about the underlying mechanisms. Shell formation is an extremely complex process requiring a detailed understanding of biomineralization processes. Sodium incorporation into the shells would increase if bivalves rely on the exchange of Na+/H+ to maintain homeostasis for shell formation, thereby shedding new light on the acid-base and ionic regulation at the calcifying front.

 Pacific Data Hub

This study evaluated the combined effects of seawater pH decrease and temperature increase on the activity of antioxidant enzymes in the thick shell mussel Mytilus coruscus, an ecological and economic bivalve species widely distributed along the East China Sea. Mussels were exposed to three pH levels (8.1, 7.7 and 7.3) and two temperatures (25°C and 30°C) for 14 days.

 Pacific Data Hub

Hypoxia and ocean acidification are two consequences of anthropogenic activities. These global trends occur on top of natural variability. In environments such as estuarine areas, short-term acute pH and O2 fluctuations are occurring simultaneously. The present study tested the combined effects of short-term seawater acidification and hypoxia on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were exposed for 72 h to six combined treatments with three pH levels (8.1, 7.7 and 7.3) and two dissolved oxygen (DO) levels (2 mg L−1, 6 mg L−1).

 Pacific Data Hub

By the end of this century, anthropogenic carbon dioxide (CO2) emissions are expected to decrease the surface ocean pH by as much as 0.3 unit. At the same time, the ocean is expected to warm with an associated expansion of the oxygen minimum layer (OML). Thus, there is a growing demand to understand the response of the marine biota to these global changes. We show that ocean acidification will substantially depress metabolic rates (31%) and activity levels (45%) in the jumbo squid, Dosidicus gigas, a top predator in the Eastern Pacific. This effect is exacerbated by high temperature.