7 results
 Pacific Data Hub

Ocean acidification (OA), attributed to the sequestration of atmospheric carbon dioxide (CO2) into the surface ocean, and coastal eutrophication, attributed in part to land-use change and terrestrial runoff of fertilizers, have received recent attention in an experimental framework examining the effects of each on coral reef net ecosystem calcification (Gnet). However, OA and eutrophication in conjunction have yet to receive attention from the perspective of coral reef sediment dissolution.

 Pacific Data Hub

Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of the major reef framework builders. In addition, acidification is likely to affect the important relationship between corals and their symbiotic dinoflagellates, and on the productivity of this association. However, little is known about how acidification impacts on the physiology of key reef builders and how acidification interacts with warming.

 Pacific Data Hub

Concern about the impacts of ocean acidification (OA) on ecosystem function has prompted many studies to focus on larval recruitment, demonstrating declines in settlement and early growth at elevated CO2 concentrations. Since larval settlement is often driven by particular cues governed by crustose coralline algae (CCA), it is important to determine whether OA reduces larval recruitment with specific CCA and the generality of any effects.

 Pacific Data Hub

Coral reefs are under threat, exerted by a number of interacting effects inherent to the present climate change, including ocean acidification and global warming. Bioerosion drives reef degradation by recycling carbonate skeletal material and is an important but understudied factor in this context.

 Pacific Data Hub

The impact of ocean acidification (OA) on coral calcification, a subject of intense current interest, is poorly understood in part because of the presence of symbionts in adult corals. Early life history stages of Acropora spp. provide an opportunity to study the effects of elevated CO2 on coral calcification without the complication of symbiont metabolism.

 Pacific Data Hub

Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index for assessing the physiological plasticity of Pocillopora damicornis larvae from this site to conditions of ocean acidity and warming.

 Pacific Data Hub

By the end of the century coral reefs likely will be affected negatively by ocean acidification (OA), but both the effects of OA on coral communities and the crossed effects of OA with other physical environmental variables are lacking. One of the least considered physical parameters is water flow, which is surprising considering its strong role in modulating the physiology of reef organisms and communities. In the present study, the effects of flow were tested on coral reef communities maintained in outdoor flumes under ambient pCO2 and high pCO2 (1300 $μ$atm).