2 results
 Pacific Data Hub

Declining health of scleractinian corals in response to deteriorating environmental conditions is widely acknowledged, however links between physiological and functional genomic responses of corals are less well understood. Here we explore growth and the expression of 20 target genes with putative roles in metabolism and calcification in the branching coral, Acropora millepora, in two separate experiments: 1) elevated pCO2 (464, 822, 1187 and 1638 $μ$atm) and ambient temperature (27 °C), and 2) elevated pCO2 (490 and 822 $μ$atm) and temperature (28 and 31 °C).

 Pacific Data Hub

As global ocean change progresses, reef-building corals and their early life history stages will rely on physiological plasticity to tolerate new environmental conditions. Larvae from brooding coral species contain algal symbionts upon release, which assist with the energy requirements of dispersal and metamorphosis. Global ocean change threatens the success of larval dispersal and settlement by challenging the performance of the larvae and of the symbiosis.