55 results
 Pacific Data Hub

Ocean acidification is predicted to impact the structure and function of all marine ecosystems in this century. As focus turns towards possible impacts on interactions among marine organisms, its effects on the biology and transmission potential of marine parasites must be evaluated. In the present study, we investigate two marine trematode species (Philophthalmus sp. and Parorchis sp., both in the family Philophthalmidae) infecting two marine gastropods.

 Pacific Data Hub

Biomaterials connect organisms to their environments. Their function depends on biological, chemical and environmental factors, both at the time of creation and throughout the life of the material. Shifts in the chemistry of the oceans driven by anthropogenic CO2 (termed ocean acidification) have profound implications for the function of critical materials formed under these altered conditions.

 Pacific Data Hub

Increasing atmospheric CO2 can decrease seawater pH and carbonate ions, which may adversely affect the larval survival of calcareous animals. In this study, we simulated future atmospheric CO2 concentrations (800, 1500, 2000 and 3000 ppm) and examined the effects of ocean acidification on the early development of 3 mollusks (the abalones Haliotis diversicolor and H. discus hannai and the oyster Crassostrea angulata).

 Pacific Data Hub

During mariculture period, maricultured macroalga Gracilaria lemaneiformis experienced seasonal temperature changes. In this study, we examine the effects of predicted ocean acidification on carbon and nitrogen accumulation and amino acids (AA) contents in G. lemaneiformis under different temperature levels. The results showed that G. lemaneiformis exhibited higher growth rates under high temperature conditions than under low temperature conditions, regardless of CO2 levels. Moreover, compared with low temperature, the culture conditions of high temperature enhanced N accumulation in G.

 Pacific Data Hub

Multiple aspects of climate change are expected to co-occur such that ocean acidification will take place in conjunction with warming and a range of trophic changes. Previous studies have demonstrated that nutritional condition plays a significant role in the responses of invertebrates to ocean acidification, but similar studies have yet to be conducted with marine fishes. In this study, we examined the potential interactive effects of elevated CO2 levels and nutritional stress on the growth and development of northern rock sole (Lepidopsetta polyxystra).

 Pacific Data Hub

Anthropogenic CO2 is causing warming and ocean acidification. Coral reefs are being severely impacted, yet confusion lingers regarding how reefs will respond to these stressors over this century. Since the 1982-83 El Niño-Southern Oscillation warming event, the persistence of reefs around the Galápagos Islands has differed across an acidification gradient. Reefs disappeared where pH \textless 8.0 and aragonite saturation state ($Ømega$arag) ≤ 3 and have not recovered, whereas one reef has persisted where pH \textgreater 8.0 and $Ømega$arag \textgreater 3.

 Pacific Data Hub

Human-induced ocean acidification and warming alter seawater carbonate chemistry reducing the calcification of reef-building crustose coralline algae (CCA), which has implications for reef stability. However, due to the presence of multiple carbonate minerals with different solubilities in seawater, the algal mineralogical responses to changes in carbonate chemistry are poorly understood. Here we demonstrate a 200% increase in dolomite concentration in living CCA under greenhouse conditions of high pCO2 (1,225 muatm) and warming (30 degrees C).

 Pacific Data Hub

Ocean acidification driven by rising levels of CO2 impairs calcification, threatening coral reef growth. Predicting how corals respond to CO2 requires a better understanding of how calcification is controlled. Here we show how spatial variations in the pH of the internal calcifying fluid (pHcf) in coral (Stylophora pistillata) colonies correlates with differential sensitivity of calcification to acidification. Coral apexes had the highest pHcf and experienced the smallest changes in pHcf in response to acidification.

 Pacific Data Hub

Shells of brachiopods are excellent archives for environmental reconstructions in the recent and distant past as their microstructure and geochemistry respond to climate and environmental forcings. We studied the morphology and size of the basic structural unit, the secondary layer fibre, of the shells of several extant brachiopod taxa to derive a model correlating microstructural patterns to environmental conditions.

 Pacific Data Hub

The absorption of anthropogenic CO2 by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non-calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps. This study evaluated the effects of seawater pH on the ontogenic development of meiospores of the native kelp Macrocystis pyrifera and the invasive kelp Undaria pinnatifida, in south-eastern New Zealand.

 Pacific Data Hub

Ulva spp., an increasingly important food, are the dominant species of the large-scale green tides. In this study, both the growth and the physiological responses of the Ulva prolifera were studied after cultured in three different light and dark regimes (12:12, 14:10 and 16:8-h light/dark) in combination with current (420 $μ$atm; LC) and increased (1000 $μ$atm; HC) levels of atmospheric CO2. Grown rate of U.

 Pacific Data Hub

Despite the heightened awareness of ocean acidification (OA) effects on marine organisms, few studies empirically juxtapose biological responses to CO2 manipulations across functionally distinct primary producers, particularly benthic algae. Algal responses to OA may vary because increasing CO2 has the potential to fertilize photosynthesis but impair biomineralization. Using a series of repeated experiments on Palmyra Atoll, simulated OA effects were tested across a suite of ecologically important coral reef algae, including five fleshy and six calcareous species.

 Pacific Data Hub

As atmospheric concentrations of CO2 rise, the pH of high-latitude oceans is predicted to decrease by 0.3 to 0.5 units by 2100. Several biological consequences of ocean acidification across this pH range have already been documented in invertebrates and tropical marine fishes. However, little work has been done examining potential responses of the temperate and boreal marine fish species that support major fisheries. In 2 experiments, we examined the growth responses of juvenile walleye pollock Theragra chalcogramma at ambient and 3 elevated CO2 levels.

 Pacific Data Hub

As global ocean change progresses, reef-building corals and their early life history stages will rely on physiological plasticity to tolerate new environmental conditions. Larvae from brooding coral species contain algal symbionts upon release, which assist with the energy requirements of dispersal and metamorphosis. Global ocean change threatens the success of larval dispersal and settlement by challenging the performance of the larvae and of the symbiosis.

 Pacific Data Hub

The physiological response to individual and combined stressors of elevated temperature and pCO2 were measured over a 24-day period in four Pacific corals and their respective symbionts (Acropora millepora/Symbiodinium C21a, Pocillopora damicornis/Symbiodinium C1c-d-t, Montipora monasteriata/Symbiodinium C15, and Turbinaria reniformis/Symbiodinium trenchii). Multivariate analyses indicated that elevated temperature played a greater role in altering physiological response, with the greatest degree of change occurring within M. monasteriata and T. reniformis.