14 results
 Pacific Data Hub

There is a long history of examining the impacts of nutrient pollution and pH on coral reefs. However, little is known about how these two stressors interact and influence coral reef ecosystem functioning. Using a six-week nutrient addition experiment, we measured the impact of elevated nitrate (NO−3) and phosphate (PO3−4) on net community calcification (NCC) and net community production (NCP) rates of individual taxa and combined reef communities.

 Pacific Data Hub

Using the results from the NCAR CSM1.4-coupled global carbon cycle–climate model under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios SRES A2 and B1, we estimated the effects of both global warming and ocean acidification on the future habitats of corals in the seas around Japan during this century. As shown by Yara et al.

 Pacific Data Hub

The 3-day diurnal dynamics of carbonate system and related parameters on Luhuitou fringing reef of Sanya Bay-adjacent to the South China Sea (SCS) were observed in December of 2009 (early winter), April (spring), July (summer) and November (late-autumn) of 2010. The Luhuitou fringing reef ecosystem was generally dominated by macro and planktonic algae throughout the year except by coralline algae in winter. The system parameters showed distinct diurnal trends in the four seasons.

 Pacific Data Hub

Elevated pCO2 threatens coral reefs through impaired calcification. However, the extent to which elevated pCO2 affects the distribution of the pelagic larvae of scleractinian corals, and how this may be interpreted in the context of ocean acidification (OA), remains unknown. We tested the hypothesis that elevated pCO2 affects one aspect of the behavior (i.e., motility) of brooded larvae from Pocillopora damicornis in Okinawa (Japan), and used UV-transparent tubes that were 68-cm long (45 mm ID) to incubate larvae on a shallow fringing reef.

 Pacific Data Hub

Rising anthropogenic CO2 in the atmosphere is accompanied by an increase in oceanic CO2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants, most notably those that precipitate calcium carbonate skeletons, such as reef-building corals. Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA.

 Pacific Data Hub

In an ocean with rapidly changing chemistry, studies have assessed coral skeletal health under projected ocean acidification (OA) scenarios by characterizing morphological distortions in skeletal architecture and measuring bulk properties, such as net calcification and dissolution. Few studies offer more detailed information on skeletal mineralogy. Since aragonite crystallography will at least partially govern the material properties of coral skeletons, such as solubility and strength, it is important to understand how it is influenced by environmental stressors.

 Pacific Data Hub

Background Recent reviews suggest that the warming and acidification of ocean surface waters predicated by most accepted climate projections will lead to mass mortality and declining calcification rates of reef-building corals. This study investigates the use of modeling techniques to quantitatively examine rates of coral cover change due to these effects. Methodology/Principal Findings Broad-scale probabilities of change in shallow-water scleractinian coral cover in the Hawaiian Archipelago for years 2000–2099 A.D.

 Pacific Data Hub

Corals build their skeletons using extracellular calcifying fluid located in the tissue-skeleton interface. However, the mechanism by which corals control the transport of calcium and other ions from seawater and the mechanism of constant alkalization of calcifying fluid are largely unknown. To address these questions, we performed direct pH imaging at calcification sites (subcalicoblastic medium, SCM) to visualize active pH upregulation in live aposymbiotic primary coral polyps treated with HCl-acidified seawater.

 Pacific Data Hub

Acidification of seawater owing to oceanic uptake of atmospheric CO2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (n=3) incubated in continuous-flow mesocosms subject to future seawater conditions.

 Pacific Data Hub

Understanding how calcification is influenced by the enhanced dissolution of CO2 in the oceans is the key to evaluating the effects of ocean acidification (OA) on coral reefs. In this study, two branching hermatypic corals widely distributed in the South China Sea, Pocillopora damicornis and Seriatopora caliendrum, were used to study the calcification responses to CO2-driven OA (7.77 ± 0.07 vs. 8.15 ± 0.12). Our results showed that the calcification rate (0.17 ± 0.04%/day to 0.21 ± 0.12%/day) in P. damicornis remained unchanged in the acidified seawaters, but that in S.

 Pacific Data Hub

Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA).

 Pacific Data Hub

The physiological response to individual and combined stressors of elevated temperature and pCO2 were measured over a 24-day period in four Pacific corals and their respective symbionts (Acropora millepora/Symbiodinium C21a, Pocillopora damicornis/Symbiodinium C1c-d-t, Montipora monasteriata/Symbiodinium C15, and Turbinaria reniformis/Symbiodinium trenchii). Multivariate analyses indicated that elevated temperature played a greater role in altering physiological response, with the greatest degree of change occurring within M. monasteriata and T. reniformis.

 Pacific Data Hub

The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO32− to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes.

 Pacific Data Hub

We tested the hypothesis that ocean acidification (OA) affects spatial competition among scleractinian corals. Competitive ability was evaluated indirectly by linear extension of Porites lutea and Montipora aequituberculata placed in intraspecific, interspecific, and control pairings (paired with dead coral skeleton) and exposed to ambient (̃400 µatm) and elevated (\̃1000 µatm) pCO2 in experiments conducted in Moorea, French Polynesia, and Okinawa, Japan. High pCO2 had no effect on linear extension of M.