112 results
 Pacific Data Hub

In the California Current ecosystem, global climate change is predicted to trigger large-scale changes in ocean chemistry within this century. Ocean acidification-which occurs when increased levels of atmospheric CO2 dissolve into the ocean-is one of the biggest potential threats to marine life.

 Pacific Data Hub

In an ocean with rapidly changing chemistry, studies have assessed coral skeletal health under projected ocean acidification (OA) scenarios by characterizing morphological distortions in skeletal architecture and measuring bulk properties, such as net calcification and dissolution. Few studies offer more detailed information on skeletal mineralogy. Since aragonite crystallography will at least partially govern the material properties of coral skeletons, such as solubility and strength, it is important to understand how it is influenced by environmental stressors.

 Pacific Data Hub

We conducted a series of experiments to examine short-term (2-5 days) effects of abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater on rates of primary and bacterial production at Station ALOHA (22°45' N, 158° W) in the North Pacific Subtropical Gyre (NPSG). The majority of experiments (8 of 10 total) displayed no response in rates of primary production (measured by 14C-bicarbonate assimilation; 14C-PP) under elevated pCO2 (̃1100 $μ$atm) compared to ambient pCO2 (\̃387 $μ$atm).

 Pacific Data Hub

Background Recent reviews suggest that the warming and acidification of ocean surface waters predicated by most accepted climate projections will lead to mass mortality and declining calcification rates of reef-building corals. This study investigates the use of modeling techniques to quantitatively examine rates of coral cover change due to these effects. Methodology/Principal Findings Broad-scale probabilities of change in shallow-water scleractinian coral cover in the Hawaiian Archipelago for years 2000–2099 A.D.

 Pacific Data Hub

The present study was performed to evaluate the effects of CO2- or HCl-induced seawater acidification (pH 7.7 or 7.1; control: pH 8.1) on haemocytes of Mytilus edulis, and the changes in the structure and immune function were investigated during a 21-day experiment. The results demonstrated that seawater acidification had little effect on the cellular mortality and granulocyte proportion but damaged the granulocyte ultrastructure. Phagocytosis of haemocytes was also significantly inhibited in a clearly concentration-dependent manner, demonstrating that the immune function was affected.

 Pacific Data Hub

Sodium hypochlorite (NaOCl) is widely used to disinfect seawater in power plant cooling systems in order to reduce biofouling, and in ballast water treatment systems to prevent transport of exotic marine species. While the toxicity of NaOCl is expected to increase by ongoing ocean acidification, and many experimental studies have shown how algal calcification, photosynthesis and growth respond to ocean acidification, no studies have investigated the relationship between NaOCl toxicity and increased CO2.

 Pacific Data Hub

Kelp forests are among the world's most productive marine ecosystems, yet little is known about their biogeochemistry. This study presents a 14-month time series (July 2013–August 2014) of surface and benthic dissolved inorganic carbon and total alkalinity measurements, along with accompanying hydrographic measurements, from six locations within a central California kelp forest. We present ranges and patterns of variability in carbonate chemistry, including pH (7.70–8.33), pCO2 (172–952 µatm), and the aragonite saturation state, $Ømega$Ar (0.94–3.91).

 Pacific Data Hub

Understanding larval bivalve responses to variable regimes of seawater carbonate chemistry requires realistic quantification of physiological stress. Based on a degree-day modeling approach, we developed a new metric, the ocean acidification stress index for shellfish (OASIS), for this purpose. OASIS integrates over the entire larval period the instantaneous stress associated with deviations from published sensitivity thresholds to aragonite saturation state ($Ømega$Ar) while experiencing variable carbonate chemistry.

 Pacific Data Hub

The pteropod Limacina helicina frequently experiences seasonal exposure to corrosive conditions ($Ømega$ar  \textless 1) along the US West Coast and is recognized as one of the species most susceptible to ocean acidification (OA). Yet, little is known about their capacity to acclimatize to such conditions. We collected pteropods in the California Current Ecosystem (CCE) that differed in the severity of exposure to $Ømega$ar conditions in the natural environment.

 Pacific Data Hub

The ocean is a substantial sink for atmospheric carbon dioxide (CO2) released as a result of human activities. Over the coming decades the dissolved inorganic C concentration in the surface ocean is predicted to increase, which is expected to have a direct influence on the efficiency of C utilization (consumption and production) by phytoplankton during photosynthesis. Here, we evaluated the generality of C‐rich organic matter production by examining the elemental C:N ratio of organic matter produced under conditions of varying pCO2.

 Pacific Data Hub

As the ocean undergoes acidification, marine organisms will become increasingly exposed to reduced pH, yet variability in many coastal settings complicates our ability to accurately estimate pH exposure for those organisms that are difficult to track. Here we present larval shell-based geochemical proxies that reflect pH exposure from laboratory and field settings in larvae of the mussels Mytilus californianus and M. galloprovincialis. Laboratory-based proxies were generated from shells precipitated at pH 7.51 to 8.04.

 Pacific Data Hub

Ocean acidification (OA) and the biological consequences of altered seawater chemistry have emerged as a significant environmental threat to healthy marine ecosystems. Because a more acidic ocean interferes with fixation of calcium carbonate to form shells or calcified skeletons, future ocean chemistry may significantly alter the physiology of calcifying marine organisms. These alterations may manifest themselves directly in the calcification process, or have synergistic effects with other environmental factors such as elevated temperatures.

 Pacific Data Hub

This study evaluated the combined effects of seawater pH decrease and temperature increase on the activity of antioxidant enzymes in the thick shell mussel Mytilus coruscus, an ecological and economic bivalve species widely distributed along the East China Sea. Mussels were exposed to three pH levels (8.1, 7.7 and 7.3) and two temperatures (25°C and 30°C) for 14 days.

 Pacific Data Hub

Corals build their skeletons using extracellular calcifying fluid located in the tissue-skeleton interface. However, the mechanism by which corals control the transport of calcium and other ions from seawater and the mechanism of constant alkalization of calcifying fluid are largely unknown. To address these questions, we performed direct pH imaging at calcification sites (subcalicoblastic medium, SCM) to visualize active pH upregulation in live aposymbiotic primary coral polyps treated with HCl-acidified seawater.

 Pacific Data Hub

We show that, statistically, the simple linear regression (SLR)-determined rate of temporal change in seawater pH ($β$pH), the so-called acidification rate, can be expressed as a linear combination of a constant (the estimated rate of temporal change in pH) and SLR-determined rates of temporal changes in other variables (deviation largely due to various sampling distributions), despite complications due to different observation durations and temporal sampling distributions.

 Pacific Data Hub

Hypoxia and ocean acidification are two consequences of anthropogenic activities. These global trends occur on top of natural variability. In environments such as estuarine areas, short-term acute pH and O2 fluctuations are occurring simultaneously. The present study tested the combined effects of short-term seawater acidification and hypoxia on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were exposed for 72 h to six combined treatments with three pH levels (8.1, 7.7 and 7.3) and two dissolved oxygen (DO) levels (2 mg L−1, 6 mg L−1).

 Pacific Data Hub

In this paper, we demonstrated that ocean acidification (OA) had significant negative effects on the microscopic development of Saccharina japonica in a short-term exposure experiment under a range of light conditions. Under elevated CO2, the alga showed a significant reduction in meiospore germination, fecundity, and reproductive success. Larger female and male gametophytes were noted to occur under high CO2 conditions and high light magnified these positive effects.

 Pacific Data Hub

Although there is a substantial body of work on how temperature shapes coastal marine ecosystems, the spatiotemporal variability of seawater pH and corresponding in situ biological responses remain largely unknown across biogeographic ranges of tropical coral species. Environmental variability is important to characterize because it can amplify or dampen the biological consequences of global change, depending on the functional relationship between mean temperature or pH and organismal traits.

 Pacific Data Hub

The unusual rate and extent of environmental changes due to human activities may exceed the capacity of marine organisms to deal with this phenomenon. The identification of physiological systems that set the tolerance limits and their potential for phenotypic buffering in the most vulnerable ontogenetic stages become increasingly important to make large-scale projections. Here, we demonstrate that the differential sensitivity of non-calcifying Ambulacraria (echinoderms and hemichordates) larvae towards simulated ocean acidification is dictated by the physiology of their digestive systems.

 Pacific Data Hub

Understanding functional trait distributions among organisms can inform impacts on and responses to environmental change. In marine systems, only 1% of dissolved inorganic carbon in seawater exists as CO2. Thus the majority of marine macrophytes not only passively access CO2 for photosynthesis, but also actively transport CO2 and the more common bicarbonate (HCO3-, 92% of seawater dissolved inorganic carbon) into their cells.