6 results
 Pacific Data Hub

Declining health of scleractinian corals in response to deteriorating environmental conditions is widely acknowledged, however links between physiological and functional genomic responses of corals are less well understood. Here we explore growth and the expression of 20 target genes with putative roles in metabolism and calcification in the branching coral, Acropora millepora, in two separate experiments: 1) elevated pCO2 (464, 822, 1187 and 1638 $μ$atm) and ambient temperature (27 °C), and 2) elevated pCO2 (490 and 822 $μ$atm) and temperature (28 and 31 °C).

 Pacific Data Hub

Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of the major reef framework builders. In addition, acidification is likely to affect the important relationship between corals and their symbiotic dinoflagellates, and on the productivity of this association. However, little is known about how acidification impacts on the physiology of key reef builders and how acidification interacts with warming.

 Pacific Data Hub

The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died.

 Pacific Data Hub

Body size has large effects on organism physiology, but these effects remain poorly understood in modular animals with complex morphologies. Using two trials of a ∼24 day experiment conducted in 2014 and 2015, we tested the hypothesis that colony size of the coral Pocillopora verrucosa affects the response of calcification, aerobic respiration and gross photosynthesis to temperature (∼26.5 and ∼29.7°C) and PCO2  (∼40 and ∼1000 µatm). Large corals calcified more than small corals, but at a slower size-specific rate; area-normalized calcification declined with size.

 Pacific Data Hub

Anthropogenic CO2 is causing warming and ocean acidification. Coral reefs are being severely impacted, yet confusion lingers regarding how reefs will respond to these stressors over this century. Since the 1982-83 El Niño-Southern Oscillation warming event, the persistence of reefs around the Galápagos Islands has differed across an acidification gradient. Reefs disappeared where pH \textless 8.0 and aragonite saturation state ($Ømega$arag) ≤ 3 and have not recovered, whereas one reef has persisted where pH \textgreater 8.0 and $Ømega$arag \textgreater 3.

 Pacific Data Hub

Human-induced ocean acidification and warming alter seawater carbonate chemistry reducing the calcification of reef-building crustose coralline algae (CCA), which has implications for reef stability. However, due to the presence of multiple carbonate minerals with different solubilities in seawater, the algal mineralogical responses to changes in carbonate chemistry are poorly understood. Here we demonstrate a 200% increase in dolomite concentration in living CCA under greenhouse conditions of high pCO2 (1,225 muatm) and warming (30 degrees C).