58 results
 Pacific Data Hub

Habitat warming and acidification experienced by intertidal invertebrates are potentially detrimental to sensitive early post-larvae of benthic marine invertebrates. To determine the potential impact of acidification and warming on a conspicuous component of the temperate intertidal fauna of the southern hemisphere, the response of newly metamorphosed juvenile (ca. 450 $μ$m diameter) sea stars (Parvulastra exigua) to increased acidification and temperature was investigated with respect to conditions recorded in the habitat (− 0.4–0.6 pH units, + 2-4 °C), in all combinations of stressors.

 Pacific Data Hub

As typical of intertidal invertebrates the asterinid seastar Parvulastra exigua experiences marked variation in environmental temperature and pH/pCO2 due to tidal exchange and diurnal patterns of photosynthesis and respiration. We characterized the temperature and pH/pCO2 conditions in the mid-intertidal, rocky-shore habitat of this species and used these data along with projections for the ocean over coming decades to define treatments in oxygen consumption experiments. The metabolic response of P.

 Pacific Data Hub

Coral reefs are under threat, exerted by a number of interacting effects inherent to the present climate change, including ocean acidification and global warming. Bioerosion drives reef degradation by recycling carbonate skeletal material and is an important but understudied factor in this context.

 Pacific Data Hub

Excavating sponges are prominent bioeroders on coral reefs that in comparison to other benthic organisms may suffer less or may even benefit from warmer, more acidic and more eutrophic waters. Here, the photosymbiotic excavating sponge Cliona orientalis from the Great Barrier Reef was subjected to a prolonged simulation of both global and local environmental change: future seawater temperature, partial pressure of carbon dioxide (as for 2100 summer conditions under "business-as-usual" emissions), and diet supplementation with particulate organics.

 Pacific Data Hub

Anthropogenic carbon dioxide (CO2) emissions simultaneously increase ocean temperatures and reduce ocean surface pH, a process termed ocean acidification (OA). OA is expected to negatively affect the growth and physiology of many calcified organisms, but the response of non-calcified (fleshy) organisms is less well understood. Rising temperatures and pCO2 can enhance photosynthetic rates (within tolerance limits). Therefore, warming may interact with OA to alter biological responses of macroalgae in complicated ways.

 Pacific Data Hub

Turf algal assemblages are ubiquitous primary producers on coral reefs, but little is known about the response of this diverse group to ocean acidification (OA) across different temperatures. We tested the hypothesis that CO2 influences the functional response of epilithic and endolithic turf assemblages to increasing temperature. Replicate carbonate plugs covered by turf were collected from the reef and exposed to ambient and high pCO2 (1000 µatm) conditions for 3 weeks.

 Pacific Data Hub

The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died.

 Pacific Data Hub

Ocean acidification and greenhouse warming will interactively influence competitive success of key phytoplankton groups such as diatoms, but how long-term responses to global change will affect community structure is unknown. We incubated a mixed natural diatom community from coastal New Zealand waters in a short-term (two-week) incubation experiment using a factorial matrix of warming and/or elevated pCO2 and measured effects on community structure.

 Pacific Data Hub

Oceans are warming and becoming more acidic. While higher temperature and lower pH can have negative effects on fertilisation and development of marine invertebrates, warming may partially ameliorate the negative effect of lower pH.

 Pacific Data Hub

Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live.

 Pacific Data Hub

Cryptic colouration in crustaceans, important for both camouflage and visual communication, is achieved through physiological and morphological mechanisms that are sensitive to changes in environmental conditions. Consequently, ocean warming and ocean acidification can affect crustaceans' biophotonic appearance and exoskeleton composition in ways that might disrupt colouration and transparency.

 Pacific Data Hub

Body size has large effects on organism physiology, but these effects remain poorly understood in modular animals with complex morphologies. Using two trials of a ∼24 day experiment conducted in 2014 and 2015, we tested the hypothesis that colony size of the coral Pocillopora verrucosa affects the response of calcification, aerobic respiration and gross photosynthesis to temperature (∼26.5 and ∼29.7°C) and PCO2  (∼40 and ∼1000 µatm). Large corals calcified more than small corals, but at a slower size-specific rate; area-normalized calcification declined with size.

 Pacific Data Hub

The CO2-boosted trophic transfer from primary producers to herbivores has been increasingly discovered at natural CO2 vents and in laboratory experiments. Despite the emerging knowledge of this boosting effect, we do not know the extent to which it may be enhanced or dampened by ocean warming. We investigated whether ocean acidification and warming enhance the nutritional quality (C:N ratio) and energy content of turf algae, which is speculated to drive higher feeding rate, greater energy budget and eventually faster growth of herbivores.

 Pacific Data Hub

This study evaluated the combined effects of seawater pH decrease and temperature increase on the activity of antioxidant enzymes in the thick shell mussel Mytilus coruscus, an ecological and economic bivalve species widely distributed along the East China Sea. Mussels were exposed to three pH levels (8.1, 7.7 and 7.3) and two temperatures (25°C and 30°C) for 14 days.

 Pacific Data Hub

Population outbreaks of the corallivorous crown-of-thorns starfish, Acanthaster planci, are a major contributor to the decline in coral reef across the Indo-Pacific. The success of A. planci and other reef species in a changing ocean will be influenced by juvenile performance because the naturally high mortality experienced at this sensitive life history stage maybe exacerbated by ocean warming and acidification. We investigated the effects of increased temperature and acidification on growth of newly metamorphosed juvenile A.

 Pacific Data Hub

In this paper, we demonstrated that ocean acidification (OA) had significant negative effects on the microscopic development of Saccharina japonica in a short-term exposure experiment under a range of light conditions. Under elevated CO2, the alga showed a significant reduction in meiospore germination, fecundity, and reproductive success. Larger female and male gametophytes were noted to occur under high CO2 conditions and high light magnified these positive effects.

 Pacific Data Hub

Diatoms are often considered to be a single functional group, yet there is a great deal of morphological, genetic and ecological diversity within the class. How these differences will translate into species-specific responses to rapid changes in the ocean environment resulting from climate change and eutrophication is currently poorly understood.

 Pacific Data Hub

Mg/Ca ratio paleothermometry in foraminifera is an important tool for the reconstruction and interpretation of past environments. However, existing Mg/Ca:temperature relationships for planktic species inhabiting mid- and high- latitude environments are limited by a lack of information about the development and impact of low-Mg/Ca ratio “crusts” and the influence of the carbonate system on Mg/Ca ratios in these groups.

 Pacific Data Hub

Concerns about the impacts of ocean acidification on marine life have mostly focused on how reduced carbonate saturation affects calcifying organisms. Here, we show that levels of CO2-induced acidification that may be attained by 2100 could also have significant effects on marine organisms by reducing their aerobic capacity. The effects of temperature and acidification on oxygen consumption were tested in 2 species of coral reef fishes, Ostorhinchus doederleini and O. cyanosoma, from the Great Barrier Reef, Australia.

 Pacific Data Hub

Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index for assessing the physiological plasticity of Pocillopora damicornis larvae from this site to conditions of ocean acidity and warming.